
To Build a production ready
distributed task queueing
system with celery.

30:00

Hello!

I am Vishrut Kohli

Software Engineer at Grofers.

You can find me at
 https://www.linkedin.com/in/lazycoder07/

 https://www.reddit.com/user/ramenandcode

http://vishrutkohli.github.io/

2

https://www.linkedin.com/in/lazycoder07/
https://www.reddit.com/user/ramenandcode
http://vishrutkohli.github.io/

3

Production Ready?

● Highly Efficient

● Scalable

● Transparent

● Resilient.

Talk content
● What are task queues and why we need them?
● What is and why Celery?
● Building a distributed task queueing system.
● Tuning a distributed task queueing system for

better efficiency.
● Adding resiliency to the system
● What to do in times of SOS?
● Monitoring the system we built.
● Most importantly bad jokes.

4

Prerequisites
● Basic knowledge of python.
● Basic knowledge of web development.
● Worked or heard about celery before.
● A sense of Humour and love for Gifs.

5

Why Task Queues?
Let’s start with an example.

6

28:00

7

Task Queues come
to rescue?

8

What is and why celery?

9

28:00

Keywords we will use in this talk

● Task Queues

● Task

● Worker

● Broker

● result_backend

10

Which broker to choose?

● RabbitMQ

● Redis

● etc.

Each one is great for their specific use case .

Step 1: Build

11

Let's think of an Ecommerce(Grofers) warehouse to build.

There are going to be 3 things which happen there.

1. Picking of the products

2. packing of the products

3. delivery of the order.

23:00

12

One boy doing all the work

13

One boy and one girl doing
all the work

14

Specialised people doing
their work

15

Why Pipelines?

1. It gives us the ability to see bottlenecks and scale

smaller components. Instead of the whole system.

2. This will give the ability to give different kind of

machines to different fragments.

3. It helps us keep track of the status of the tasks and

will add some kind of resiliency(Self-healing

capability) to the system by enabling retries at every

step.

16

Running two pipelines in ||

Warehouse 1

Warehouse 2

17

Code for our application

18

Code for our pipeline

19

Code for our pipeline

20

Code for our pipeline

Step 2: Tune

21

Some tips , tricks and configuration

settings to get most out of celery.

18:00

Always benchmark before
moving to further optimization

22

23

Can we use batching ?

● Takes stress off

your Database by

enabling batch

CRUD

operations.

● Retries and failures

will also happen on

batches even when

one part of batch

fails.

24

New code for our application

25

New code for our pipeline

Always split tasks into IO-bound and
CPU bound tasks

26

celery -A proj worker -P <pool> -c <concurrency_needed>

● Gvent
● Eventlet
● Prefork

Use -Ofair optimization when possible.

27

Keep track of results only if you need them

28

CELERY_IGNORE_RESULT = True

Step 3: Resiliency

29

“Software errors are inevitable.
Chaos is not.”

-sentry.io

13:00

30

31

32

33

Use a DLQ to capture Circuit breaked failures.

Step 4: SOS

35

09:00

Always use Max tasks per child/max
memory per child when you suspect a
memory leak in your task

36

celery -A proj worker -P <pool> -c <concurrency_needed>
--max-tasks-per-child=<Number_of_tasks>

celery -A proj worker -P <pool> -c <concurrency_needed>
--max-memory-per-child=<Memory_in_Kib>

Step 5: Monitor

37

07:00

flower -A PyjamasLive --port=5555

38

Step 6: SLEEP SOUNDLY

39

questions? tomatoes

40

05:00

Thank you

00:00

