
MINIMUM VIABLE
SECURITY

David Melamed
Co-Founder & CTO, Jit

FOR PYTHON APPS

JAN 27, 2022

 2022

WHO IS THIS GUY?

• Co-Founder & CTO at Jit

• Passionate about technology and security

• PhD in BioInformatics (France)

• Full-stack Engineer in the CTO Office at CloudLock (acquired by Cisco)

• Cloud Security CTO Office at Cisco

• Has been involved in various communities (PyCon IL, AWS User Group...)

SECURITY: START ON DAY 0

• Never too early to start

• Manage security debt from Day 0

• Makes security a Continuous concern

• Start minimal and iterate

●— Andrew Hoffman (Salesforce)

“Writing a secure web
application starts at the

architecture phase. A
vulnerability discovered in

this phase can cost as
much as 60 times less than

a vulnerability found in
production code.”

TYPICAL CLOUD APP - ARCHITECTURE

TYPICAL CLOUD APP - RISKS

TYPICAL CLOUD APP - LAYERS

SECURE SLDC

Source: https://holisticsecurity.io/2020/02/10/security-along-the-sdlc-for-cloud-native-apps/

M V PS
Minimal Viable Security

FROM MVP TO MVS

3rd-Party apps security

● MFA on all 3rd party services

Code Security

● Static code scanning

● Dependency check

● Hard-coded secrets

Infrastructure security

● Cloud misconfiguration detection

● Secure remote access

● Cloud account hardening

● Employee offboarding process

● Incident response plan

● Generate a privacy/security policy

Security OperationsRuntime Application
Security

● API security

● Yearly pentesting

CI/CD Security

● Source control and CI/CD tools security

● Account hardening

● Container image scanning

MINIMAL VIABLE SECURITY

DEMO: SECURING A PYTHON APP (1)

Sample Python cloud application

DEMO: SECURING A PYTHON APP (2)

Bandit Gitleaks Safety OWASP
ZAP

SAST SAST (Secrets) SCA DAST MFA

Custom

IAC

KICS

● Code source static analysis and detection of existing patterns

● For this demo, we will use: Bandit

○ Security open-source linter for Python source code

○ Includes 35 rules for detecting vulnerabilities

CODE VULNERABILITIES
S

O
U

R
C

E
 C

O
D

E

SECRET DETECTION

● Part of SAST analysis, looks for hard-coded secrets based on
regexes and high entropy

● For this demo, we will use: Gitleaks

○ Supports multiple types of secrets: API keys, AWS
credentials, SSH keys…

○ Supports detecting secrets in git history

S
O

U
R

C
E

 C
O

D
E

INFRASTRUCTURE AS CODE
IN

F
R

A
ST

R
U

C
TU

R
E

● When the infrastructure is expressed as code, it is possible to
detect misconfigurations early by scanning the code

● A popular tool : KICS

○ Supports many infrastructure types: CloudFormation,
Terraform, Ansible, Kubernetes, Docker, Ansible, ARM…

○ Includes 2,000+ built-in queries

DEPENDENCY VULNERABILITY

● Publicly disclosed vulnerabilities in project dependencies (CPE / CVE)

● For this demo, we will use: Safety

○ Detects publicly disclosed vulnerabilities contained within a
project’s dependencies

○ Open Source (monthly update) or commercial

S
O

U
R

C
E

 C
O

D
E

RUNTIME MONITORING

● Some vulnerabilities can only be detected at runtime, e.g. cross
site scripting (XSS) or SQL injection (SQLi)

● For this demo, we will use: ZED Attack Proxy

○ Free web app scanner by OWASP

○ Includes 17 built-in rules

○ Uses OpenAPI to crawl endpoints

R
U

N
TI

M
E

SCM SECURITY

● With rising supply chain attacks, it is critical to ensure that the
SCM service and the pipeline are properly secured

● The minimum is to ensure that MFA is enabled everywhere

● For this demo, we will write a custom control

○ List Github users that don’t have MFA enabled

○ Fail the control if the list is not empty

○ Will leverage a token with admin:read score stored as
Github secret

P
IP

E
LI

N
E

Source: https://mentorphile.com/2018/09/14/demo-or-die/

https://github.com/dvdmelamed/conf42-2022-talk

WE ARE HIRING!
Drop me an email david@jit.io

Website: www.jit.io

Beta Program: jit-me-in@jit.io

Want to help developers with security?

Continuous Security Platform for Developers

mailto:david@jit.io
http://www.jit.io/

