

Conf42: Python 2022

Strategies for working with data
as it grows

Photo by Hunter Harritt on Unsplash

Conf42: Python 2022

Marco Carranza
Technical Co-Founder Teamcore

@mccrnz
www.teamcore.net

With @gvanrossum in #pycon2018

https://twitter.com/gvanrossum
https://twitter.com/hashtag/pycon2018?src=hashtag_click

Conf42: Python 2022

Introduction

Pandas Tricks for memory control

Vertical scaling with Jupyter + Cloud

Processing larger datasets with Vaex

Speed Up Pandas with Modin

All-in with Pyspark

Agenda

Photo by Nick Rickert on Unsplash

https://unsplash.com/@nick_rickert?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/python?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

 Introduction

Data is getting bigger and bigger, making it
almost impossible to processed it in desktop
machines.

A lot of new technologies (Hadoop, Spark,
Presto, Dask, etc.)

Photo by Ussama Azam on Unsplash

Multiple challenges that requires combining
multiple technologies and building Data
Pipelines.

 Pandas Tricks for memory control

Sometimes datasets comes with many empty
values, usually represented as NaN values.

Using a sparse column representation could help
us save some memory.

Sparse objects uses much less memory on disk
(pickled) and in the Python interpreter.

Photo by Artturi Jalli on Unsplash

Trick #1 - Sparse data structures

https://unsplash.com/@artturijalli?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/python?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Sampling data is very useful when you are
working with a large dataset.

Sample the data representatively can help you
work with a much smaller dataset,

In most of the cases the analysis will run faster
without sacrificing the quality of the results.

pandas.DataFrame.sample

https://pandas.pydata.org/pandas-docs/stable
/reference/api/pandas.DataFrame.sample.html

Photo by Ilya Pavlov on Unsplash

Trick #2 - Sampling

DataFrame.sample(n=None, frac=None, replace=False, weights=None, random_state=None, axis=None, ignore_index=False)

Some data sources include too many columns.

If you're not going to use all the columns, there's
no need to load them

Less columns = Less memory
Photo by Markus Spiske on Unsplash

Trick #3 - Load only the columns that you need

Trick #3 - Load only the columns that you need

Numerical types can store different range of
numbers.

int8 can store integers from -128 to 127.
int16 can store integers from -32768 to 32767.
int64 can store integers from
-9223372036854775808 to 9223372036854775807.

Pandas always try to guess the dtypePhoto by Artturi Jalli on Unsplash

Trick #4 - Change numerical columns with smaller dtypes

https://unsplash.com/@artturijalli?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/python?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

In some cases is possible to shrink
non-numerical data and reduce the memory
footprint.

Pandas has a custom categorical Dtype for this
cases.

https://pandas.pydata.org/pandas-docs/stable
/user_guide/categorical.htmlPhoto by Mohammad Rahmani on Unsplash

Trick #5 - Use Categorical dtypes

98% of memory reduccion

You can load only part of the file into memory at
any given time by loading and then processing
the data in chunks.

This will prevent your code crashing if there's not
enough memory.

Reading files by chunks helps process large files
that will not fit into memory.Photo by Joan Gamell on Unsplash

Trick #6- Reading data by chunks

 Vertical Scaling with jupyter and the
cloud

Vertical scaling is the ability to increase the
capacity of existing hardware or software by
adding resources. (CPU, Memory, etc.)

Horizontal scaling involves adding machines
in the pool of existing resources.

Photo by Tanner Boriack on Unsplash

Vertical scaling vs Horizontal Scaling

The Jupyter Notebook is an open-source web
application that allows you to create and share
documents that contain live code, equations,
visualizations and narrative text.

Very easy to run code on the cloud.

Machines of multiple sizes (+1TB ram)

Jupyter + Cloud

No code changes needed.

Easy, if using cloud tools. (Binder,
Kaggle Kernels, Google Colab, Azure
Notebooks, CoCalc, Datalore, etc.)

Good for testing, data cleaning
and visualization.

You pay only for what you use (If
you don’t forget to turn off your VM!)

Jupyter + Cloud

Expensive in the long run. Not
optimized.

Does no escales very well.

Not production ready

PRO CONS

 Speed Up Pandas with Modin

Modin

Scale your pandas workflow by changing a single
line of code.

Multiprocess Dataframe library with an identical
API to pandas that allows users to speed up their
Pandas workflows

Accelerates Pandas queries by 4x on an 8-core
machine, only requires to change a single line of
code.

pip install modin

Modin vs. Pandas

Pandas implementation is inherently single-threaded. This means that
only one of your CPU cores can be utilized at any given time.

Modin’s implementation enables you to use all of the cores on your
machine, or all of the cores in an entire cluster.

Unlocks all the CPU power

Only one import is needed, so no
changes in the code are needed.

Really fast when reading data.

Compute engines available to distribute
the calculations on a cluster with Dask or
Ray.

Modin

Extra effort depending of the compute
engine setup (Dask / Ray) + clusters

Distributed systems are complex

Requires a lot of memory as Pandas

PRO CONS

 Processing large datasets with Vaex

Vaex is a Python library, with a similar syntax to
Pandas, that help us work with large data-sets
in machines with limited resources were the
only limitation is the size of the hard drive.

Vaex provides memory-mapping, so it will never
touch or copy the data to memory unless is
explicitly requested.

Vaex

Is a multipurpose hierarchical container
format capable of storing large numerical
datasets with their metadata. The specification
is open and the tools are open source.

Convert large CSV files to HDF5 on the fly
(Memory mapping)

Vaex + HDF5

df = vaex.from_csv('./my_data/my_big_file.csv',
convert=True,
chunk_size=5_000_000)

Provides a dataframe Server so calculations
and/or aggregations could run on a different
computer than where the (aggregated) data is
needed.

Python API (websockets) and REST API
available

Vaex API

Helps control memory usage with
memory mapping (Amazing samples)

Computes on the fly (Lazy / Virtual
columns)

Easy to build visualizations with datasets
larger than memory

Machine learning algorithms available
through vaex.ml package.

Can export data to a Pandas Dataframe

Vaex

Need modification in the code, syntax
similar to Pandas

Not as mature as Pandas, but improving
every day.

Tricky to work with exported HDf5 from
pandas

PRO CONS

 All-in with Pyspark

Pyspark

When you need to work with a very large-scale data, its mandatory
to distribute both the data and computations to a cluster. This can
not be achieved with Pandas.

Spark is an analytics engine used for large-scale data processing. It
lets you spread both data and computations over clusters to achieve
a substantial performance increase.

Pyspark

PySpark is a Python API for Spark. It combines the simplicity of
Python with the high performance of Spark.

Also provides the PySpark shell for interactively analyzing your data
in a distributed environment.

PySpark supports most of Spark’s features such as Spark SQL,
DataFrame, Streaming, MLlib (Machine Learning) and Spark Core.

Pyspark

Great speed with large dataset.

Very rich and mature ecosystem. With a
lot of libraries for Machine Learning,
feature extraction and, transformations

Run on Hadoop alongside other tools in
the Hadoop ecosystem

Need modification in the code, syntax is
different to Pandas

Bad performance with small datasets,
Pandas could be faster.

In Spark MLlib there are fewer algorithms
present.

Spark requires huge RAM to process in
memory, so is not very cost effective.

PRO CONS

 Final Notes

Multiple options to scale your workloads

The easiest is to vertical scale your resources with Jupyter and
a Cloud Provider, but first don't forget to optimize your
dataframe.

There are some powerful alternatives to work with large
datasets like Vaex.

If you need to process a huge amount of data, you can use
Modin with Ray or Dask to distributed your workload.

Or you can rewrite your Pandas logic to make it run over Sparks
Dataframes, and take advantage of many cloud providers PaaS.

Photo by Michael Dziedzic on Unsplash

https://unsplash.com/@lazycreekimages?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/processor?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Thank you very much for your attention!

“Premature optimization is the root of all evil”

Donald Knuth
The Art of Computer Programming

Marco Carranza
@mccrnz

https://github.com/marcocarranza/conf42_data_strategies

