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  Introduction 



  

Data is getting bigger and bigger, making it 
almost impossible to processed it in desktop 
machines.

A lot of new technologies (Hadoop, Spark, 
Presto, Dask, etc.)
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Multiple challenges that requires combining 
multiple technologies and building Data 
Pipelines.



  Pandas Tricks for memory control



  

Sometimes datasets comes with many empty 
values, usually represented as NaN values.

Using a sparse column representation could help 
us save some memory.

Sparse objects uses much less memory on disk 
(pickled) and in the Python interpreter.
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Sampling data is very useful when you are 
working with a large dataset.

Sample the data representatively can help you 
work with a much smaller dataset, 

In most of the cases the analysis will run faster 
without sacrificing the quality of the results.

pandas.DataFrame.sample

https://pandas.pydata.org/pandas-docs/stable
/reference/api/pandas.DataFrame.sample.html
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Trick #2 - Sampling



  

DataFrame.sample(n=None, frac=None, replace=False, weights=None, random_state=None, axis=None, ignore_index=False)



  

Some data sources include too many columns.

If you're not going to use all the columns, there's 
no need to load them

Less columns = Less memory
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Trick #3 - Load only the columns that you need



  

Trick #3 - Load only the columns that you need



  

Numerical types can store different  range of 
numbers.

int8 can store integers from -128 to 127.
int16 can store integers from -32768 to 32767.
int64 can store integers from 
-9223372036854775808 to 9223372036854775807.

Pandas always try to guess the dtypePhoto by Artturi Jalli on Unsplash 

Trick #4 - Change numerical columns with smaller dtypes
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In some cases is possible to  shrink 
non-numerical data and reduce the memory 
footprint.

Pandas has a custom categorical Dtype for this 
cases.

https://pandas.pydata.org/pandas-docs/stable
/user_guide/categorical.htmlPhoto by Mohammad Rahmani on Unsplash

Trick #5 - Use Categorical dtypes



  

98% of memory reduccion



  

You can load only part of the file into memory at 
any given time by loading and then processing 
the data in chunks.

This will prevent your code crashing if there's not 
enough memory.

Reading files by chunks helps process large files 
that will not fit into memory.Photo by Joan Gamell on Unsplash

Trick #6- Reading data  by chunks



  



  Vertical Scaling with jupyter and the 
cloud



  

Vertical scaling is the ability to increase the 
capacity of existing hardware or software by 
adding resources. (CPU, Memory, etc.)

Horizontal scaling involves adding machines 
in the pool of existing resources.

Photo by Tanner Boriack on Unsplash 

Vertical scaling vs Horizontal Scaling



  

The Jupyter Notebook is an open-source web 
application that allows you to create and share 
documents that contain live code, equations, 
visualizations and narrative text. 

Very easy to run code on the cloud.

Machines of multiple sizes (+1TB ram)

Jupyter + Cloud



  

No code changes needed.

Easy, if using cloud tools. (Binder, 
Kaggle Kernels, Google Colab, Azure 
Notebooks, CoCalc, Datalore, etc.)

Good for testing, data cleaning 
and visualization.

You pay only for what you use (If 
you don’t forget to turn off your VM!)

Jupyter + Cloud

Expensive in the long run. Not 
optimized.

Does no escales very well.

Not production ready

PRO    CONS    



  Speed Up Pandas with Modin



  

Modin

Scale your pandas workflow by changing a single 
line of code.

Multiprocess Dataframe library with an identical 
API to pandas that allows users to speed up their 
Pandas workflows

Accelerates Pandas queries by 4x on an 8-core 
machine, only requires to change a single line of 
code.

pip install modin



  

Modin vs. Pandas

Pandas implementation is inherently single-threaded. This means that 
only one of your CPU cores can be utilized at any given time.

Modin’s implementation enables you to use all of the cores on your 
machine, or all of the cores in an entire cluster.



  

Unlocks all the CPU power

Only one import is needed, so no 
changes in the code are needed.

Really fast when reading data.

Compute engines available to distribute 
the calculations on a cluster with Dask or 
Ray.

Modin

Extra effort depending of the compute 
engine setup (Dask / Ray) + clusters

Distributed systems are complex

Requires a lot of memory  as Pandas

PRO    CONS    



  Processing large datasets with Vaex



  

Vaex is a Python library, with a similar syntax to 
Pandas, that help us work with large data-sets 
in machines with limited resources were the 
only limitation is the size of the hard drive.

Vaex provides memory-mapping, so it will never 
touch or copy the data to memory unless is 
explicitly requested.

Vaex



  

Is a multipurpose hierarchical container 
format capable of storing large numerical 
datasets with their metadata. The specification 
is open and the tools are open source.

Convert large CSV files to HDF5 on the fly 
(Memory mapping)

Vaex + HDF5 

df = vaex.from_csv('./my_data/my_big_file.csv', 
convert=True,
chunk_size=5_000_000)



  

Provides a dataframe Server so  calculations 
and/or aggregations could run on a different 
computer than where the (aggregated) data is 
needed.

Python API (websockets) and REST API 
available

Vaex API 



  

Helps control memory usage with 
memory mapping (Amazing samples)

Computes on the fly (Lazy / Virtual 
columns)

Easy to build visualizations with datasets 
larger than memory

Machine learning algorithms available 
through vaex.ml package.

Can export data to a Pandas Dataframe

Vaex

Need modification in the code, syntax 
similar to Pandas

Not as mature as Pandas, but improving 
every day.

Tricky to work with exported HDf5 from 
pandas

PRO    CONS    



  All-in with Pyspark



  

Pyspark

When you need to work with a very large-scale data, its mandatory  
to distribute both the data and computations to a cluster. This can 
not be achieved with Pandas.

Spark is an analytics engine used for large-scale data processing. It 
lets you spread both data and computations over clusters to achieve 
a substantial performance increase.



  

Pyspark

PySpark is a Python API for Spark. It combines the simplicity of 
Python with the high performance of Spark.

Also provides the PySpark shell for interactively analyzing your data 
in a distributed environment. 

PySpark supports most of Spark’s features such as Spark SQL, 
DataFrame, Streaming, MLlib (Machine Learning) and Spark Core.



  

Pyspark

Great speed with large dataset.

Very rich and mature ecosystem. With a 
lot of libraries for Machine Learning, 
feature extraction and, transformations

Run on Hadoop alongside other tools in 
the Hadoop ecosystem

Need modification in the code, syntax is 
different to Pandas

Bad performance with small datasets, 
Pandas could be faster.

In Spark MLlib there are fewer algorithms 
present.

Spark requires huge RAM to process in 
memory, so is not very cost effective.

PRO    CONS    



  Final Notes



  

Multiple options to scale your workloads

The easiest is to vertical scale your resources with Jupyter and 
a Cloud Provider, but first don't forget to optimize your 
dataframe.

There are some powerful alternatives to work with large 
datasets like Vaex.

If you need to process a huge amount of data, you can use 
Modin with Ray or Dask to distributed your workload.

Or you can rewrite your Pandas logic to make it run over Sparks 
Dataframes, and take advantage of many cloud providers PaaS.
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Thank you very much for your attention!   

“Premature optimization is the root of all evil”
 

Donald Knuth
The Art of Computer Programming

Marco Carranza
@mccrnz

https://github.com/marcocarranza/conf42_data_strategies


