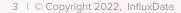


Time Series DB

Should I use one in my application architecture?

Anais Dotis-Georgiou Developer Advocate


Contents

Who is InfluxDB?

What is Time Series?

Why do we need Time Series Databases?

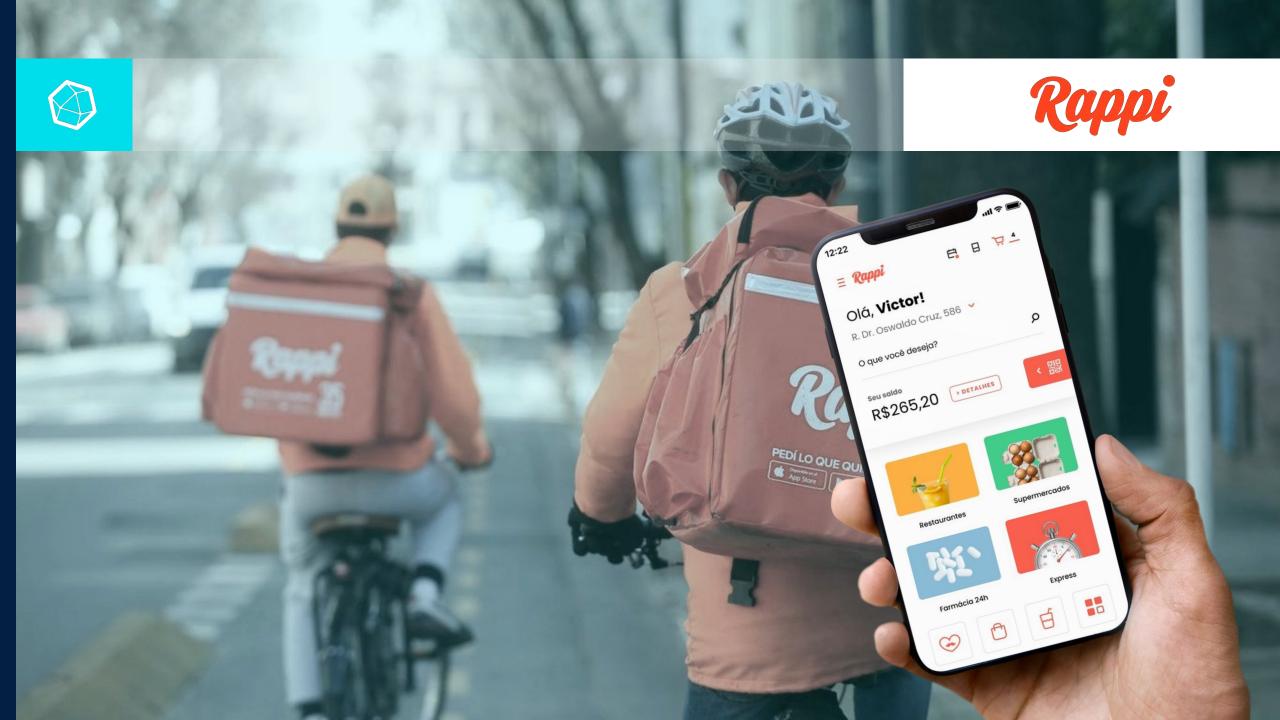
How do I know if a Time Series database is right for my application?



Influx Data - At a glance

FOUNDED	2013 San Francisco HQ, 180 FTE's, 67+ in technical functions
FOCUS	Where developers build real-time applications for IoT, Analytics and Cloud native services
DIFFERENCE	One platform; one API across Multiple Clouds and On-Prem Ingest, query, story using common tools regardless of architecture
OSS FOUNDATION	1300+ Customers and 736,000 daily active OSS deployments; Google , Cisco, SAP, Comcast, Tesla, Siemens, PTC, Honeywell, JP Morgan Chase
BUSINESS MODEL	PLG Driven Usage and Subscription Model Pay for what you use; Pay how you want. Credit card, cloud provider, annual contract

You have probably used InfluxDB



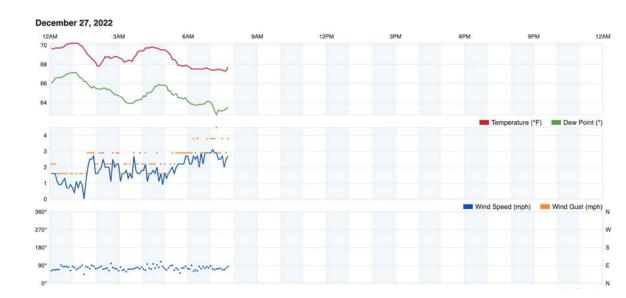
What is Time Series Data?

Time series data is a collection of observations obtained through repeated measurements over time

Time Series Example - Weather Station

December 27, 2022

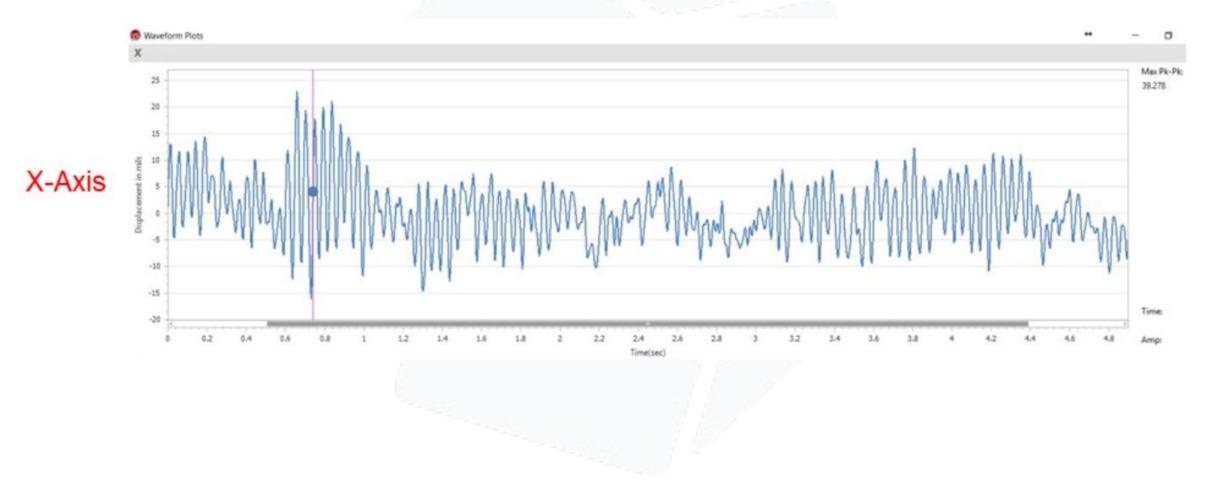
Time	Temperature	Dew Point	Humidity	Wind	Speed	Gust	Pressure	Precip. Rate.	Precip. Accum.	UV	Solar
12:04 AM	69.7 °F	66.0 °F	88 %	ENE	1.0 mph	1.7 mph	29.96 in	0.00 in	0.00 in	0	0 w/m²
12:09 AM	69.6 °F	66.1 °F	89 %	ENE	1.0 mph	1.4 mph	29.97 in	0.00 in	0.00 in	0	0 w/m²
12:14 AM	69.6 °F	66.4 °F	89 %	ENE	1.0 mph	1.4 mph	29.96 in	0.00 in	0.00 in	0	0 w/m²
12:19 AM	69.7 °F	66.6 °F	90 %	ENE	0.9 mph	1.2 mph	29.96 in	0.00 in	0.00 in	0	0 w/m²
12:24 AM	69.7 °F	66.6 °F	90 %	ENE	0.5 mph	1.1 mph	29.97 in	0.00 in	0.00 in	0	0 w/m ²
12:29 AM	69.7 °F	66.6 °F	90 %	East	0.7 mph	0.9 mph	29.96 in	0.00 in	0.00 in	0	0 w/m²
12:34 AM	69.7 °F	66.6 °F	90 %	East	0.9 mph	1.4 mph	29.97 in	0.00 in	0.00 in	0	0 w/m²
12:39 AM	69.9 °F	66.8 °F	90 %	East	0.8 mph	1.4 mph	29.96 in	0.00 in	0.00 in	0	0 w/m²
12:44 AM	70.0 °F	66.9 °F	90 %	East	0.4 mph	0.9 mph	29.96 in	0.00 in	0.00 in	0	0 w/m²
12:49 AM	70.1 °F	67.0 °F	90 %	East	0.3 mph	0.4 mph	29.97 in	0.00 in	0.00 in	0	0 w/m²
12:54 AM	70.1 °F	67.0 °F	90 %	ENE	0.4 mph	0.7 mph	29.96 in	0.00 in	0.00 in	0	0 w/m²
12:59 AM	70.2 °F	67.1 °F	90 %	East	0.3 mph	0.6 mph	29.96 in	0.00 in	0.00 in	0	0 w/m²



Time Series Example - Weather Station

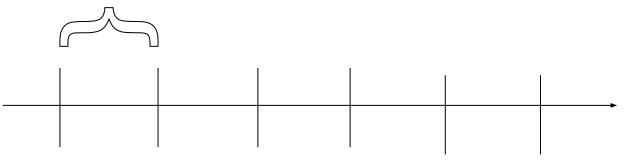
Summary

December 27, 2022

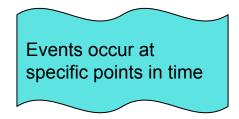

	High	Low	Average		High	Low	Average
Temperature	70.2 °F	67.1 °F	68.6 °F	Wind Speed	3.1 mph	0.0 mph	1.4 mph
Dew Point	67.1 °F	62.6 °F	64.9 °F	Wind Gust	4.5 mph		1.9 mph
Humidity	92 %	83 %	88 %	Wind Direction			ENE
Precipitation	0.00 in			Pressure	29.97 in	29.91 in	

Time Series Example - Predictive Maintenance

Time Series Example - Health Charting

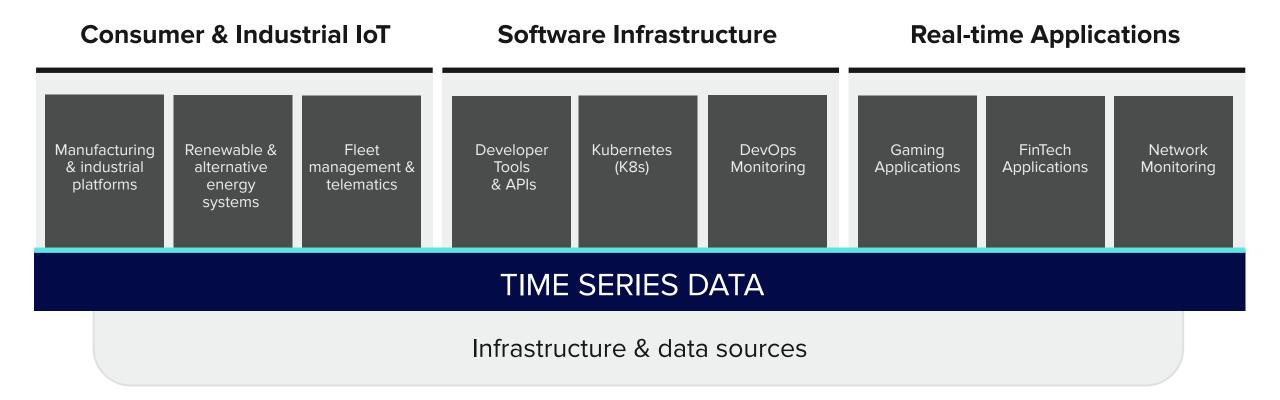

Time	Pulse	Blood Pressure	Temperature
8:00am	65	120/80	98.6
8:30am	68	110/70	98.5
9:00am	70	112/72	98.5
9:30am	110	98/50	101.5
10:00am	82	120/75	99.2

Metrics and Events



Time

Time


Metrics occur on regular time intervals

Why do we need time series databases?

Time series data is advancing in many areas

Additional Data Sources: Computer/Device

Human Generated

Computer/Device Generated

- Account Updates
- ➤ Billing Updates
- Order Records

Log Events

Device Status

Sensor Status

Transaction Oriented Scales with business

Time Oriented Scales with many factors

Scalability

Interval	Number per second	Number of generated records per day
Minute	.0166666666	1,440
Second	1	86,400
Millisecond	1 thousand	86.4 Million
Microsecond	1 million	86.4 Billion
Nanosecond	1 billion	86.4 Trillion


1 Device - at various intervals

→ Time Series databases are designed to be able to scale to a large volume of ingestion data

Queryability & Query Performance

Time Series Databases are typically organized by time

Time Series Database are optimized for fast retrieval of blocks of time series data

Summarization/Down Sampling

- Time Series Data can typically be summarized to reduce its size - often referred to as downsampling
- → With Time Series, this can often happen at the database engine level without the need for a lot of additional coding

Weather Station Example

Today	Tomorrow
1 Sample Temperature Every 5 minutes	Yesterday's High & Low & Average Temperature
288 Records	1 Record

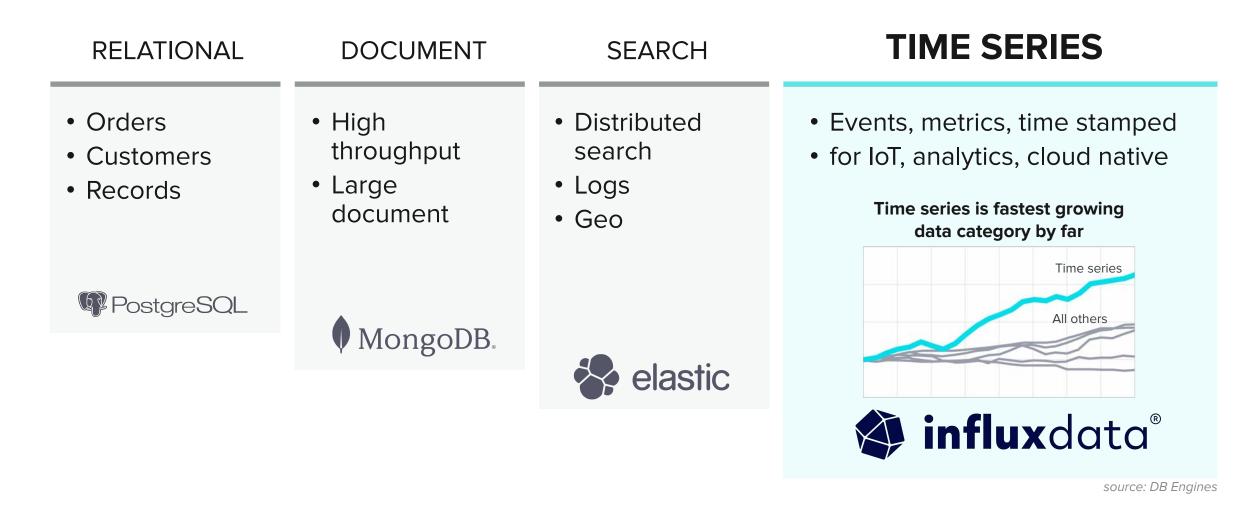
Data Storage

Time Series Database Feature	Benefit
DownSampling/Summarization	Reduces Number of Records retained, reducing storage size
Compression	The nature of time series data typically makes it very highly compressible ; this often gives time series databases a big advantage on needed storage size for the same amount of data
Data Retention Policies	Time Series Databases typically let you set a retention period for data and data that falls outside that retention period is automatically removed; based on the organization of data by time, this mass deletion of data doesn't have negative impact on your database like it can with some databases

How do I know if Time Series is right for my application?

Does my data have a time element?

Do I care about changes in my data over time?


How much data will I be working with?

Will there be a need to do any analytics with my data in the future?

Am I concerned with Storage Costs?

Am I concerned about application performance with time series data?

Summary: There are Great Options Out There

influxdata®

Getting started with InfluxDB

Sign up

Influxdata.com

Via cloud marketplace

Learn

- ✓ Self-service content
- Documentation
- ✓ InfluxDB University

Get InfluxDB

THANK YOU

InfluxData

influxdata.com