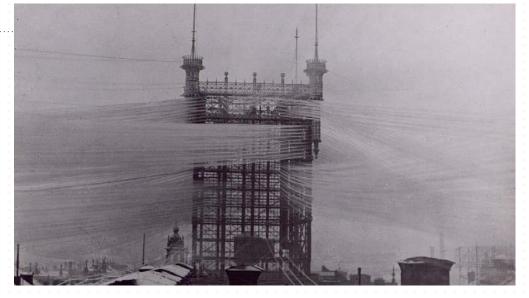


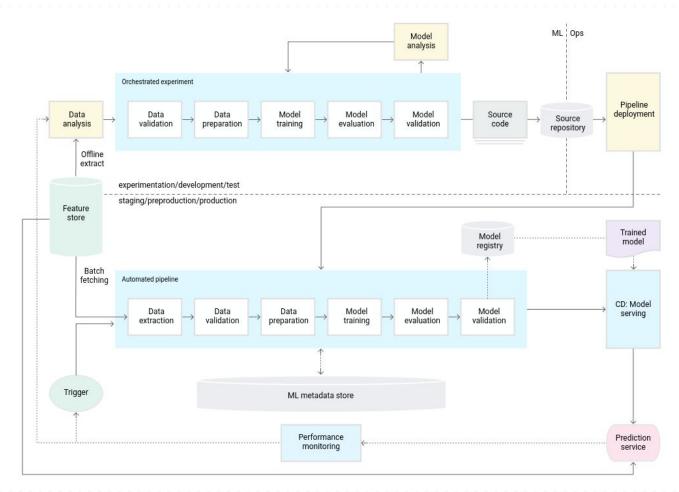
CONF42 Python, March 2023

The mythical machine learning pipeline - use feature/training/inference pipelines

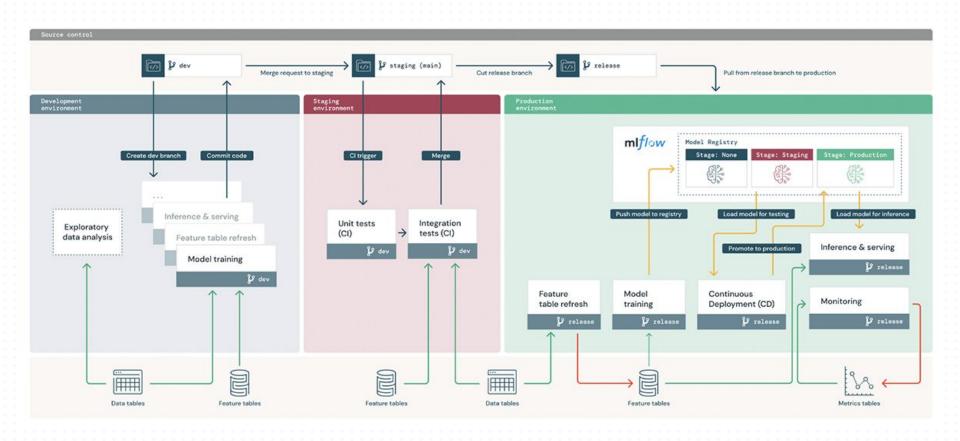


MLOps Today

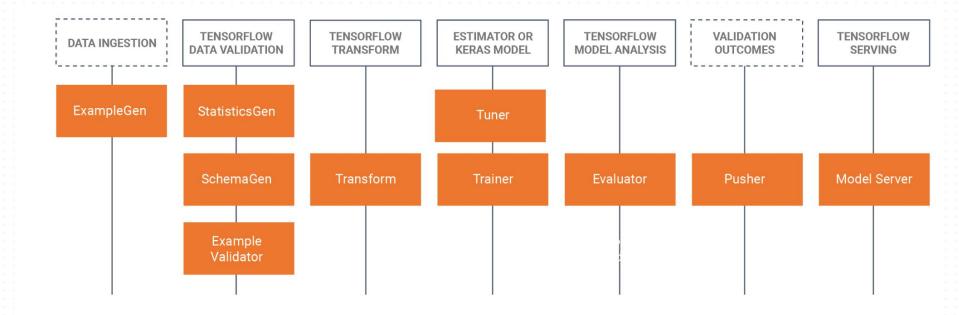
MLOps as i is too hard **MLOps** as it exists today



// MLOps according to Databricks



// The Mythical End-to-End Machine Learning Pipeline



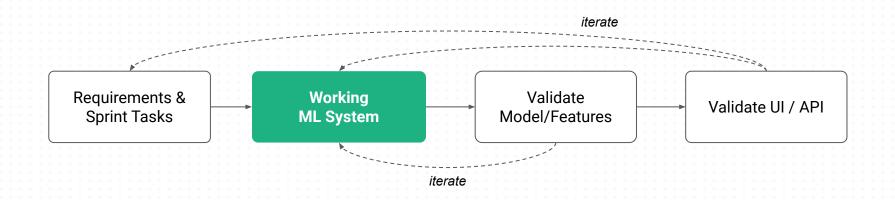
// Problems with the Monolithic ML Pipelines

"Kubeflow Pipelines is a platform for building and deploying portable, scalable machine learning (ML) workflowsEnd-to-end orchestration....enabling you to re-use components and pipelines to quickly create end-to-end solutions without having to rebuild each time" [KubeFlow] Website (Feb '23)]

- Coupling feature engineering, model training, and inference adds development and operational complexity
- No reuse of precomputed features across multiple models (feature store)
- Too hard to get to a working MVP (minimal viable ML product)

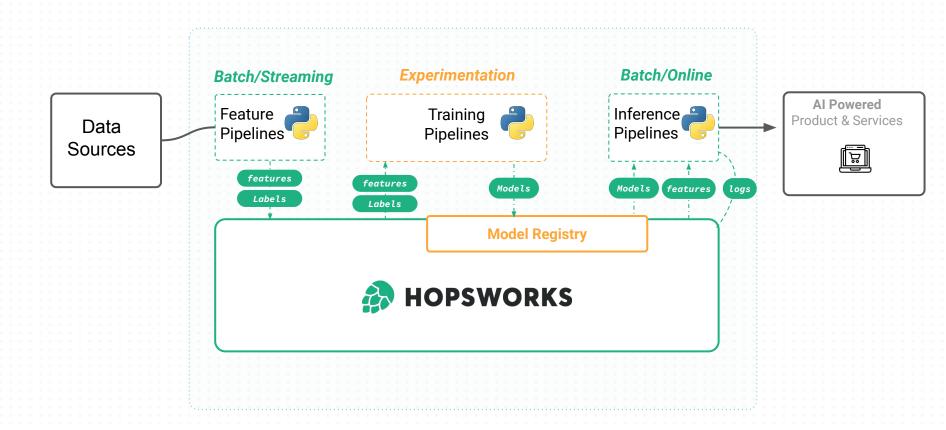
// For developers, MLOps is about Testing, Versioning, and incremental changes

- Get to a working ML system with a baseline, then iteratively improve it.
- Automated testing and versioning of features and models
- Improve both iteration speed and quality



MLOps in Python without the infrastructure

// Feature Pipelines, Training Pipelines, and Inference Pipelines



Pipelines

// Feature Pipelines - transform raw data into DataFrames

// Feature Pipelines: Python or Spark or SQL or Flink?

Spark

Good: scale, testing, complex features.

Bad: resource estimation, debugging, operations.

SQL

Good: low operational overhead, easy to implement aggregations

Bad: Complex features (e.g., embeddings) become very complex with UDFs

Python

Good: low operational overhead, rich library support, complex features possible. Pandas or Polars.

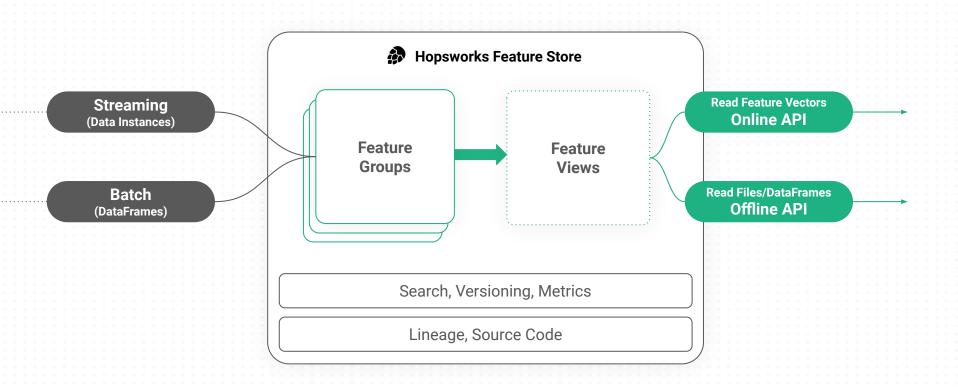
Bad: does not scale (~10 GBs with Pandas, Polars ~100 GBs),

Flink Challenges

Good: low-latency, real-time feature computation that scales to huge clusters (10k+ nodes)

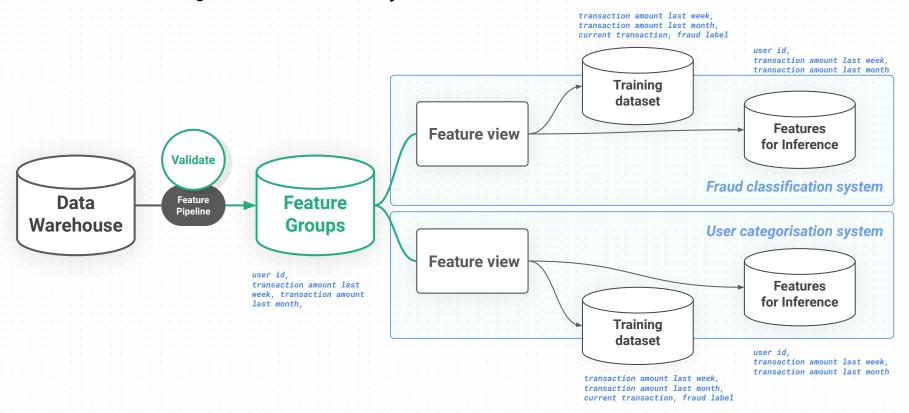
Bad: complex, Java-centric, high operational overhead

// Feature Store: Write to Feature Groups, Read from Feature Views



// One Feature Pipeline - Many Models

A **single feature pipeline** to ingest features into feature group and the feature view can reuse the features for training and inference on **many models**.

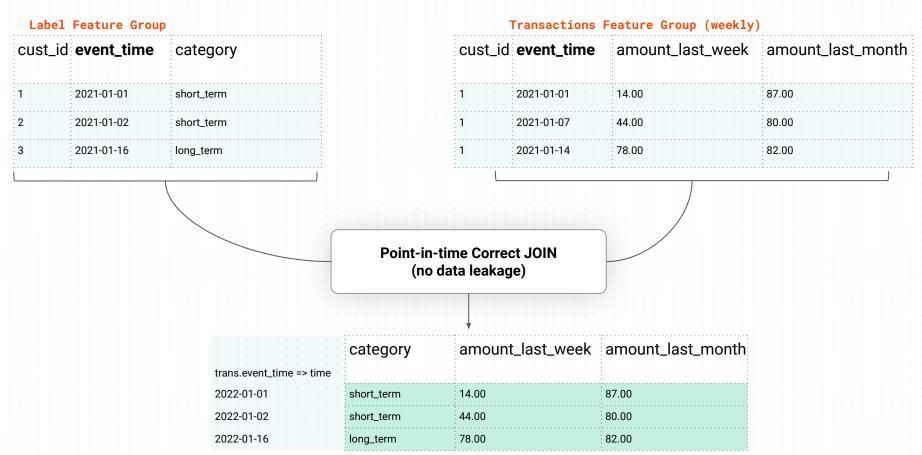


Training Pipelines

What does a Feature View do?

- 1. API for ML model development and operations
- **2. Define** features, labels, and model-specific transformations
- **3. Generate** training dataset, batch inference data, and feature vectors

// Feature View: Point-in-Time Correct JOINs



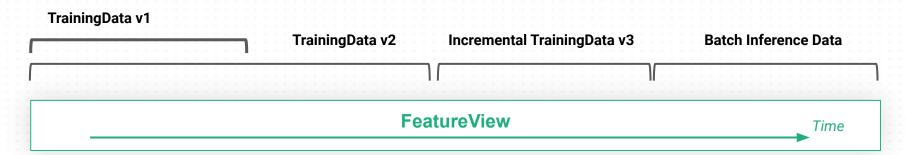
Training Data

// Feature View: Point-in-Time Correct JOINs

```
WITH right fg0 AS (
   SELECT *
    FROM (
       SELECT `fg1`.`category`
            , `fg0`.`amount_last_seek`
            , `fg0`.`amount_last_month`
            , RANK() OVER (PARTITION BY `fg0`.`cust_id`, `fg1`.`event_time` ORDER BY `fg0`.`event_time` DESC) pit_rank_hopsworks
      FROM `label_fg` `fg1`
        INNER JOIN `transactions fg` `fg0`
        ON `fg1`.`cust_id` = `fg0`.`cust_id` AND `fg1`.`event_time` >= `fg0`.`event_time`
    WHERE `pit_rank_hopsworks` = 1)
    (SELECT `right_fg0`.`category`, `right_fg0`.`mean_cloud_perc_se3`, `right_fg0`.`mean_cloud_perc_se3`
    FROM right_fg0)
```

```
query = label_fg.select(["category"]).join(
    transactions_fg.select(["amount_last_week", "amount_last_month"])
)
```


// Feature View: Training Data and Batch Inference Data for Models



```
1 # Create training data in a specific file format
    td_version, td_job = feature_view.create_train_validation_test_split(
        description = 'transactions fraud batch training dataset',
        data format = 'csv',
        validation_size = 0.2,
        test_size = 0.1
 7 )
 9 # Retrieve previoulsy materialised training data
10 X_train, y_train, X_val, y_val, X_test, y_test = feature_view.get_train_validation_test_split(1)
    # Generate batches of data from a certain time range
    start_time = datetime.strptime("2022-01-03 00:00:01", date_format)
    end_time = datetime.strptime("2022-03-31 23:59:59",date_format)
    march transactions = feature view.get batch data(
        start_time = start_time, end_time = end_time)
```


// Feature View: Model-Specific Transformations

Training Pipeline

```
standard_scaler = fs.get_transformation_function(name="standard_scaler")
    label_encoder = fs.get_transformation_function(name="label_encoder")
    transformation_functions = {
        "amount_last_month": standard_scaler,
        "amount last week": standard scaler,
        "category": label_encoder,
    fv = fs.create_feature_view(name="category_predictin",
            transformation_functions=transformation_functions)
13 X_train,X_test,y_train, y_test = fv.train_test_split(0.1)
```

Online Inference Pipeline

```
1 keys= {cust_id: 1}
2 feature_vector = fv.get_feature_vector(keys)
```

Model-Specific Transformation functions (UDFs) applied transparently

94 Inference Pipelines

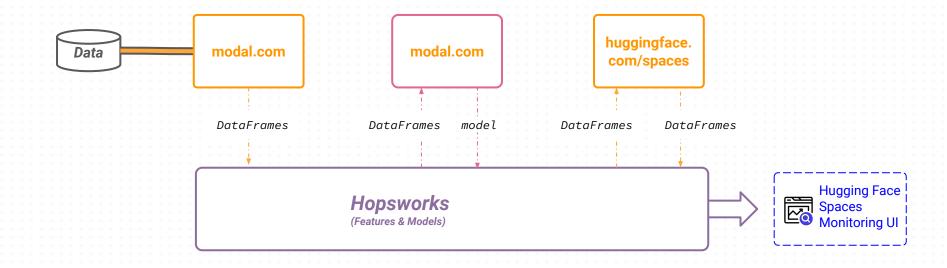
The predictor interface

11 Establish connection to Feature Store 12 15 16 Initialize Feature View 21 22 23 Loading the model from a model registry Implementing the predict interface using the Feature View

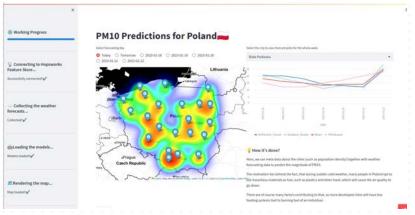
```
1 import os
 2 import numpy as np
    import joblib
    class Predict(object):
        def __init__(self):
            """ Initializes the serving state, reads a trained model"""
            # get feature store handle
            fs conn = hsfs.connection()
            self.fs = fs_conn.get_feature_store()
            # get feature views
            self.fv = self.fs.get_feature_view("transactions_view", 1)
            # initialise serving
            self.fv.init_serving(1)
            # load the trained model
            self.model = joblib.load(
                os.environ["ARTIFACT_FILES_PATH"] + "/fraud.model.pkl")
            print("Initialization Complete")
        def predict(self, inputs):
            """ Serves a prediction request usign a trained model"""
            # Numpy Arrays are not JSON serializable
            return self.model.predict(
                np.asarray(
                    self.fv.get_feature_vector({"cc_num": inputs[0]}))
                        .reshape(1, -1)
                ).tolist()
```

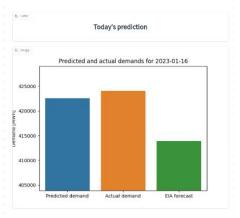

05 Demo

// Serverless Machine Learning with Hopsworks, Modal, and HF Spaces



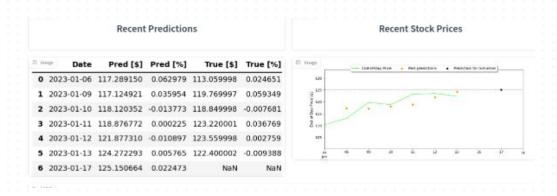
// Example Serverless Machine Learning Systems

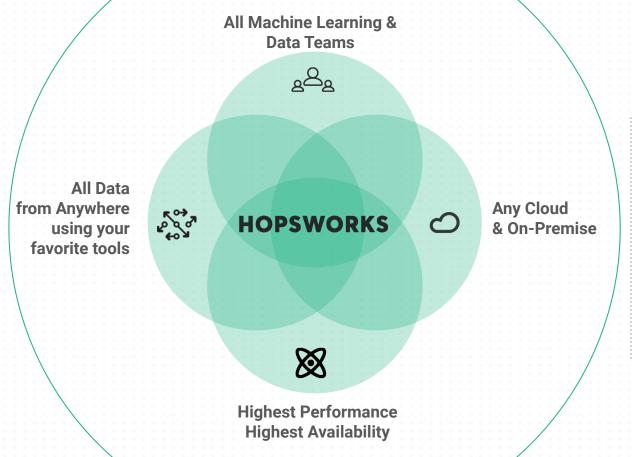




Air Quality Predictions for Poland

New York Electricity Price Demand





On Premise

public-hopsworks.slack.com

- Join our slack community
- **Explore our latest** tutorials
- Ask us any questions

SERVERLESS ML

www.serverless-ml.org