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Introducing Python for machine learning projects

● Simple and consistent
● Understandable by humans
● General-purpose programming language
● Extensive selection of libraries and 

frameworks



Introducing Python for machine learning projects

● Spam filters
● Recommendation systems
● Search engines
● Ppersonal assistants
● Fraud detection systems



Introducing Python for machine learning projects

● Machine learning ● Keras, TensorFlow, and 
Scikit-learn

● High-performance 
scientific computing

● Numpy, Scipy

● Computer vision ● OpenCV

● Data analysis ● Numpy, Pandas

● Natural language 
processing

● NLTK, spaCy
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Introducing Python for machine learning projects
● Reading/writing many different data formats
● Selecting subsets of data
● Calculating across rows and down columns
● Finding and filling missing data
● Applying operations to independent groups within the data
● Reshaping data into different forms
● Combing multiple datasets together
● Advanced time-series functionality
● Visualization through Matplotlib and Seaborn
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Introducing Python for machine learning projects

import pandas as pd 
import pandas_profiling 

# read the dataset 
data = pd.read_csv('your-data') 
prof = pandas_profiling.ProfileReport(data)
prof.to_file(output_file='output.html')
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Python libraries

● Supervised and unsupervised machine learning
● Classification, regression, Support Vector Machine
● Clustering, Kmeans, DBSCAN
● Random Forest



Python libraries

● Pipelines
● Grid-search
● Validation curves
● One-hot encoding of categorial data
● Dataset generators
● Principal Component Analysis (PCA)



Python libraries

Pipelines

>>> from sklearn.pipeline import make_pipeline
>>> from sklearn.naive_bayes import MultinomialNB
>>> from sklearn.preprocessing import Binarizer
>>> make_pipeline(Binarizer(), MultinomialNB())
Pipeline(steps=[('binarizer', Binarizer()), 
('multinomialnb', MultinomialNB())])
http://scikit-learn.org/stable/modules/pipeline.html

https://www.google.com/url?q=http://scikit-learn.org/stable/modules/pipeline.html&sa=D&source=editors&ust=1677264932582262&usg=AOvVaw2btetlFHsjYfbe-AuzIHez


Python libraries

Grid-search
estimator.get_params()
A search consists of:
● an estimator (regressor or classifier such as 

sklearn.svm.SVC())
● a parameter space
● a method for searching or sampling candidates
● a cross-validation scheme
● a score function

https://scikit-learn.org/stable/modules/grid_search.html#grid-search

https://www.google.com/url?q=https://scikit-learn.org/stable/modules/grid_search.html%23grid-search&sa=D&source=editors&ust=1677264932590464&usg=AOvVaw1O0L-6e-OLPeX2SjHk0rWC


Python libraries

Validation curves

https://scikit-learn.org/stable/modules/learning_curve.html

https://www.google.com/url?q=https://scikit-learn.org/stable/modules/learning_curve.html&sa=D&source=editors&ust=1677264932729403&usg=AOvVaw2de3IwGuMmZpaThUqK1Cm4


Python libraries

Validation curves
>>> train_scores, valid_scores = validation_curve(
...     Ridge(), X, y, param_name="alpha", param_range=np.logspace(-7, 3, 3),
...     cv=5)
>>> train_scores
array([[0.93..., 0.94..., 0.92..., 0.91..., 0.92...],

 [0.93..., 0.94..., 0.92..., 0.91..., 0.92...],
[0.51..., 0.52..., 0.49..., 0.47..., 0.49...]])

>>> valid_scores
array([[0.90..., 0.84..., 0.94..., 0.96..., 0.93...],
 [0.90..., 0.84..., 0.94..., 0.96..., 0.93...],
[0.46..., 0.25..., 0.50..., 0.49..., 0.52...]])



Python libraries

One-hot encoding

https://scikit-learn.org/stable/modules/preprocessing.html#encoding-categorical-features

# importing sklearn one hot encoding
from sklearn.preprocessing import 
OneHotEncoder
# initializing one hot encoding
encoding = OneHotEncoder()
# applying one hot encoding in python
transformed_data = 
encoding.fit_transform(data[['Status']])
# head
print(transformed_data.toarray())

https://www.google.com/url?q=https://scikit-learn.org/stable/modules/preprocessing.html%23encoding-categorical-features&sa=D&source=editors&ust=1677264932885586&usg=AOvVaw365JIbf-twjSrRpDoqtmqr


Python libraries

Dataset generators

https://scikit-learn.org/stable/datasets/sample_generators.html

https://www.google.com/url?q=https://scikit-learn.org/stable/datasets/sample_generators.html&sa=D&source=editors&ust=1677264932990438&usg=AOvVaw3OUS3Uy0z01_TduHY1Jm6W


Python libraries
Principal Component Analysis (PCA)

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html

https://www.google.com/url?q=https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html&sa=D&source=editors&ust=1677264933134601&usg=AOvVaw2xBXKa68kbd7ahotzeMkEX


Python libraries
Principal Component Analysis (PCA)

from sklearn.preprocessing import StandardScaler

sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

from sklearn.decomposition import PCA

pca = PCA(n_components=2)
X_train = pca.fit_transform(X_train)
X_test = pca.transform(X_test)
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Python tools for deep learning

TensorFlow Keras Pytorch

API Level High and Low High Low

Architecture Not easy to use Simple, concise, 
readable

Complex, less 
readable

Speed Fast, 
high-performance

Slow, low 
performance

Fast, 
high-performance

Trained 
Models

Yes Yes Yes



Python tools for deep learning

● tight integration with NumPy – Use numpy.ndarray in Theano-compiled 
functions.

● transparent use of a GPU – Perform data-intensive computations much faster 
than on a CPU.

● efficient symbolic differentiation – Theano does your derivatives for 
functions with one or many inputs.

● speed and stability optimizations – Get the right answer for log(1+x) even 
when x is really tiny.

● dynamic C code generation – Evaluate expressions faster.
● extensive unit-testing and self-verification – Detect and diagnose many 

types of error



Python tools for deep learning

● Synkhronos Extension to Theano for multi-GPU data 
parallelism

● Theano-MPI Theano-MPI a distributed framework for training 
models built in Theano based on data-parallelism.

● Platoon Multi-GPU mini-framework for Theano, single node.
● Elephas Distributed Deep Learning with Keras & Spark.
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@jmortegac

https://www.linkedin.com/in/jmortega1

https://www.google.com/url?q=https://www.linkedin.com/in/jmortega1&sa=D&source=editors&ust=1677264936135126&usg=AOvVaw0vc_3D8p4obHYI9PvIUtlk

