
Tips and tricks for data
science projects with Python

José Manuel Ortega
Python Developer

Jose Manuel Ortega
Software engineer,

Freelance

1. Introducing Python for machine learning projects
2. Stages of a machine learning project
3. Selecting the best python library for your project

for each stage
4. Python tools for deep learning in data science

projects

Introducing Python for machine learning projects

● Simple and consistent
● Understandable by humans
● General-purpose programming language
● Extensive selection of libraries and

frameworks

Introducing Python for machine learning projects

● Spam filters
● Recommendation systems
● Search engines
● Ppersonal assistants
● Fraud detection systems

Introducing Python for machine learning projects

● Machine learning ● Keras, TensorFlow, and
Scikit-learn

● High-performance
scientific computing

● Numpy, Scipy

● Computer vision ● OpenCV

● Data analysis ● Numpy, Pandas

● Natural language
processing

● NLTK, spaCy

Introducing Python for machine learning projects

Introducing Python for machine learning projects

Introducing Python for machine learning projects
● Reading/writing many different data formats
● Selecting subsets of data
● Calculating across rows and down columns
● Finding and filling missing data
● Applying operations to independent groups within the data
● Reshaping data into different forms
● Combing multiple datasets together
● Advanced time-series functionality
● Visualization through Matplotlib and Seaborn

Introducing Python for machine learning projects

Introducing Python for machine learning projects

import pandas as pd
import pandas_profiling

read the dataset
data = pd.read_csv('your-data')
prof = pandas_profiling.ProfileReport(data)
prof.to_file(output_file='output.html')

Stages of a machine learning project

Stages of a machine learning project

Stages of a machine learning project

Python libraries

Python libraries

● Supervised and unsupervised machine learning
● Classification, regression, Support Vector Machine
● Clustering, Kmeans, DBSCAN
● Random Forest

Python libraries

● Pipelines
● Grid-search
● Validation curves
● One-hot encoding of categorial data
● Dataset generators
● Principal Component Analysis (PCA)

Python libraries

Pipelines

>>> from sklearn.pipeline import make_pipeline
>>> from sklearn.naive_bayes import MultinomialNB
>>> from sklearn.preprocessing import Binarizer
>>> make_pipeline(Binarizer(), MultinomialNB())
Pipeline(steps=[('binarizer', Binarizer()),
('multinomialnb', MultinomialNB())])
http://scikit-learn.org/stable/modules/pipeline.html

https://www.google.com/url?q=http://scikit-learn.org/stable/modules/pipeline.html&sa=D&source=editors&ust=1677264932582262&usg=AOvVaw2btetlFHsjYfbe-AuzIHez

Python libraries

Grid-search
estimator.get_params()
A search consists of:
● an estimator (regressor or classifier such as

sklearn.svm.SVC())
● a parameter space
● a method for searching or sampling candidates
● a cross-validation scheme
● a score function

https://scikit-learn.org/stable/modules/grid_search.html#grid-search

https://www.google.com/url?q=https://scikit-learn.org/stable/modules/grid_search.html%23grid-search&sa=D&source=editors&ust=1677264932590464&usg=AOvVaw1O0L-6e-OLPeX2SjHk0rWC

Python libraries

Validation curves

https://scikit-learn.org/stable/modules/learning_curve.html

https://www.google.com/url?q=https://scikit-learn.org/stable/modules/learning_curve.html&sa=D&source=editors&ust=1677264932729403&usg=AOvVaw2de3IwGuMmZpaThUqK1Cm4

Python libraries

Validation curves
>>> train_scores, valid_scores = validation_curve(
... Ridge(), X, y, param_name="alpha", param_range=np.logspace(-7, 3, 3),
... cv=5)
>>> train_scores
array([[0.93..., 0.94..., 0.92..., 0.91..., 0.92...],

 [0.93..., 0.94..., 0.92..., 0.91..., 0.92...],
[0.51..., 0.52..., 0.49..., 0.47..., 0.49...]])

>>> valid_scores
array([[0.90..., 0.84..., 0.94..., 0.96..., 0.93...],
 [0.90..., 0.84..., 0.94..., 0.96..., 0.93...],
[0.46..., 0.25..., 0.50..., 0.49..., 0.52...]])

Python libraries

One-hot encoding

https://scikit-learn.org/stable/modules/preprocessing.html#encoding-categorical-features

importing sklearn one hot encoding
from sklearn.preprocessing import
OneHotEncoder
initializing one hot encoding
encoding = OneHotEncoder()
applying one hot encoding in python
transformed_data =
encoding.fit_transform(data[['Status']])
head
print(transformed_data.toarray())

https://www.google.com/url?q=https://scikit-learn.org/stable/modules/preprocessing.html%23encoding-categorical-features&sa=D&source=editors&ust=1677264932885586&usg=AOvVaw365JIbf-twjSrRpDoqtmqr

Python libraries

Dataset generators

https://scikit-learn.org/stable/datasets/sample_generators.html

https://www.google.com/url?q=https://scikit-learn.org/stable/datasets/sample_generators.html&sa=D&source=editors&ust=1677264932990438&usg=AOvVaw3OUS3Uy0z01_TduHY1Jm6W

Python libraries
Principal Component Analysis (PCA)

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html

https://www.google.com/url?q=https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html&sa=D&source=editors&ust=1677264933134601&usg=AOvVaw2xBXKa68kbd7ahotzeMkEX

Python libraries
Principal Component Analysis (PCA)

from sklearn.preprocessing import StandardScaler

sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

from sklearn.decomposition import PCA

pca = PCA(n_components=2)
X_train = pca.fit_transform(X_train)
X_test = pca.transform(X_test)

Python libraries

Python tools for deep learning

Python tools for deep learning

Python tools for deep learning

Python tools for deep learning

Python tools for deep learning

Python tools for deep learning

Python tools for deep learning

TensorFlow Keras Pytorch

API Level High and Low High Low

Architecture Not easy to use Simple, concise,
readable

Complex, less
readable

Speed Fast,
high-performance

Slow, low
performance

Fast,
high-performance

Trained
Models

Yes Yes Yes

Python tools for deep learning

● tight integration with NumPy – Use numpy.ndarray in Theano-compiled
functions.

● transparent use of a GPU – Perform data-intensive computations much faster
than on a CPU.

● efficient symbolic differentiation – Theano does your derivatives for
functions with one or many inputs.

● speed and stability optimizations – Get the right answer for log(1+x) even
when x is really tiny.

● dynamic C code generation – Evaluate expressions faster.
● extensive unit-testing and self-verification – Detect and diagnose many

types of error

Python tools for deep learning

● Synkhronos Extension to Theano for multi-GPU data
parallelism

● Theano-MPI Theano-MPI a distributed framework for training
models built in Theano based on data-parallelism.

● Platoon Multi-GPU mini-framework for Theano, single node.
● Elephas Distributed Deep Learning with Keras & Spark.

Tips and tricks for data
science projects with Python

@jmortegac

https://www.linkedin.com/in/jmortega1

https://www.google.com/url?q=https://www.linkedin.com/in/jmortega1&sa=D&source=editors&ust=1677264936135126&usg=AOvVaw0vc_3D8p4obHYI9PvIUtlk

