

Quantum and Quantum-inspired Annealing

The state of play





#### **Table of Contents**

- Introduction
- Annealers, the state of play
- Benchmarking
  - Methods
  - Results
- Conclusions





### Who am I

### Peter den Haan Quantum Computing Specialist

BA (Oxon), PhD (Nijmegen) on aspects of quantum electrodynamics in AdS space

12 years full stack development experience





### 1. Short introduction

A new way of conducting computations



# Quantum vs classical approach

In theory quantum computing should be faster... if you can take advantage of entanglement

**Quantum** Classical





### The quantum ecosystem

- 48% believe quantum computing will play a significant role in their industries by 2025. The vast majority (97%) think quantum will disrupt their industries—as well as the UK economy—to at least some extent by 2027. —EY / Jun 2022
- 43% of organisations working on quantum technologies expect them to become available for use in at least one major commercial application with the next 3-5 years —Capgemini / Mar 2022

#### **Hardware vendors**















#### **Early adopters**





























# The predictions of useful quantum computing are different — from "now" up to "20 years or more"

#### It depends on

- the use case
- the technology
  - circuit based
  - annealer based
  - quantum inspired





# Likely evolution of quantum tech

key use cases

- For selected use cases we can see the first commercial usage of quantum computing.
- For more sophisticated ones, we need to have better hardware



Source: Capgemini Research Institute analysis.



# 2. Annealers, the state of play

An overview of the market



### **Annealers**

#### Restrictive but more mature

- Optimisation problems only
- Adiabatic theorem





### **Annealers**

#### Characteristics

- Tunneling (Nature, arXiv:1411.4036v2)
- Entanglement (Phys Rev A 92, 062328)
- No rigorous proof of superiority
- A surprising number of problems can be formulated as optimisation problems (Front. Phys. 12)
  - Including all of Karp's 21 NP-complete problems
- 5614 qubits (D-Wave)





Quantum

VS

# Quantum inspired









# Rationale and approach

- Near term use of quantum (-inspired) computing resources in a production context
- What tools are available?
- What are their strengths and weaknesses?
- Fixed timeouts

- Sherrington-Kirkpatrick
- Feature selection
- Traveling salesman
- Bin packing
- Pizza parlour (integer LP)



# SK spin glass

- Perfect annealer use case
- Difference between D-Wave cloud service and QPU very significant
- Gurobi struggles a bit

#### **SK - SOLUTION QUALITY**





### Feature selection

- Perfect annealer use case
- Similar to SK but includes a constraint (the number of features)
- Early application of quantum in the ML space

#### FEATURE SELECTION - SOLUTION QUALITY





# Traveling salesman

- Perfect annealer use case
- Representative of many business problems

### TRAVELING SALESMAN - SOLUTION QUALITY





# Bin packing

- Annealers really struggle
  - ... but reformulation possible

#### **BINPACKING - SOLUTION QUALITY**





# Pizza parlour

- Not annealer territory
  - ... testing integer map
  - ... annealers are more attractive with complex constraints or non-linear terms

#### **PIZZA PARLOUR - SOLUTION QUALITY**





The bottom line



### Conclusion

The annealer landscape

- Quantum(-inspired) annealers can bring value
- D-Wave the only quantum show in town
  - ... but mostly as quantum/classical hybrid
  - ... the QPU more limited than quantum inspired options
- Hybrid needed for most business problems
- Toshiba the strongest after D-Wave





### Thank you for your attention

If you want to know more, please contact us

#### Peter den Haan

**Quantum Computing Specialist** 

mobile: +44 7842 319335

e-mail: pdenhaan@objectivity.co.uk

www.objectivity.de































#### Resources

- Computational multiqubit tunnelling in programmable quantum annealers, Boxio et al (2016), Nature Communications **7**, 10327 (<a href="https://www.nature.com/articles/ncomms10327">https://www.nature.com/articles/ncomms10327</a>, arXiv:1411.4036v2)
- Reexamination of the evidence for entanglement in a quantum annealer, Albash et al (2015), Physics Review A **92**, 062328 (<a href="https://journals.aps.org/pra/abstract/10.1103/PhysRevA.92.062328">https://journals.aps.org/pra/abstract/10.1103/PhysRevA.92.062328</a>, arXiv:1411.4036v2)
- *Ising formulations of many NP problems*, Andrew Lucas, Frontiers of Physics **12** (<a href="https://arxiv.org/abs/1302.5843">https://arxiv.org/abs/1302.5843</a>, arXiv:1302.5843)
- www.objectivity.co.uk
- www.dwavesys.com
- www.global.toshiba/ww/products-solutions/ai-iot/sbm.html
- www.fujitsu.com/global/services/business-services/digital-annealer/
- <u>learn.microsoft.com/en-us/azure/quantum/qio-target-list</u> (MSQIO, 1Qbit, Toshiba)
- <u>1qbit.com</u>
- www.quantagonia.com
- lightsolver.com