
By Tester (Atmaram Naik)

JOURNEY OF
JOURNEY

PROGRAMMING
LANGUAGE
WRITTEN IN

RUST

ABOUT
SPEAKER
|Speaker|Blogger|Passionate Programmer|
|Tester | Opensource Contributor |

@atmnk9

Works at Sedin Technologies as Test Manager

AGENDA
The Idea
Quick Demo
How it started with Java
Need for Different Language
Rust As a Chosen Language
Project Plan
+/- Features
Experiences with Rust
Extended Demo
Conclusion

THE IDEA
There should be something where I can
quickly automate routine tasks as reusable
commands

I should be able to quickly create
commands for multiple use
The commands should be parametrised
while running command if anything is not
known it should be asked to invoker of
command
Commands can be created for following
tasks

Test data creation activities
Creation of Mock servers

IDEA - ELABORATION

QUICK
DEMO

Corr compiler:
Tool with programming ability

A Journey Programming Language
Opensource project

A lazy tester wanted to automate mundane
activities

HOW IT
STARTED

Entire tool was config driven
For creating commands you needed to
create folders and files in specific
structure
all control structures were config driven
too
Was highly designed on specific
conventions that needed to be followed
To run a tool you needed to have specific
version of java and tool bundled as jar
It was used for real project as productivity
tool

INITIAL PILOT WITH JAVA

The idea is really good
Tool like this simplifies lot of mundane
activity
Creating actual command is bit difficult
and creator need to understand lot of
convention followed
The tool has dependency on specific
version of java and user needs to install
java
The tool is restrictive in terms of
possibilities that can be done with it.

OVERALL FEEDBACK

We need a language which can
produce native tool

NEED FOR
DIFFERENT
LANGUAGE

BASE LANGUAGE NEEDS
Language should be able to produce cross platform
executables
Language should be memory safe since tool is going to be
highly programmable
Language should cater to high concurrency needs since tool
can be further adopted for writing mock servers and load tests
Ecosystem around language should have ready made libraries
for creating cli tool
Language should be systems programming language since
 tool may be further extended for lower level programmability
Language should have low or no GC footprints since tool will
be further extended for load testing
Language should be type safe

EVALUATED LANGUAGES
Is Systems
Programming
Language
Can produce native
binaries
Can support very high
concurrency
Has libraries for
building cli tools
Memory safety is not
language feature and
is a programmers job
Has no GC footprint
and memory
management is
programmers job

C++
Is Systems
Programming
Language
Can produce native
binaries
Can support very high
concurrency
Has libraries for
building cli tools
Is Memory safe and
its forced on
programmer
Has no GC footprint
and rust forces
memory management
via borrow checker

Rust
Is Systems
Programming
Language
Can produce native
binaries
Can support very high
concurrency
Has libraries for
building cli tools
Is Memory safe but its
not forced on
programmer
Has Garbage collector
which periodically
scans heap for unused
object

Go

Most Loved Programming Language

Type Saftey on steroids

"If your code compiles it will
less likey have any issues"

LOVELY
RUST

corr
corrs

corr-lib
Rust Code

Rust
Compiler

corrcorrs

Intellij Idea

Plugin
Kotlin
Code

Kotlin
Compiler+G

radle

Plugin Journey
Code

PROJECT PLAN
Design and Architecture
Writing Unit, Integration
and End To End Tests
Creating Intellij Idea
Plugin for adoption of
Language
Adding more features as
and when required
Evaluating existing
Opensource Libraries for
not reinventing wheel

DESIGN AND ARCHITECTURE
Three crates and one plugin - Server, Compiler, Library, Intellij Plugin

Server (corrs)
A Websocket based server which can be interacted with
It can be integrated with any messaging applications

Compiler (corr)
Core Compiler that compiles project and creates distibutable
package

Library
A library that has most meaty parsing and execution logic which
can be reused in Server and compiler

Plugin
An Intellij plugin to provide intellisense arround syntax of
language

Unit, Integration and End to End Tests as safety net

+/- FEATURES
Started As a tool for test data creation by invoking
rest APIs
Added feature of Service Virtualisation and mocking
Added feature of Test Data creation directly in DB
Added feature of Performing load tests utilising
existing journey scripts
Removed corrs (Server Component) which can be
reintroduced since it had low adoption
CI/CD Pipeline to automatically create platform
specific installables like homebrew formula, Windows
Installers and Debian Installers

EXPERIENCES WITH RUST
Had intial typical struggles of fighting with rust compiler for code to
compile
Entire async ecosystem in rust is highly customizable.
crates like tokio, async-traits, nom, clap, serde were highly used
Needed to use nightly since many language features and libraries
used required nightly features
Some libraries were either not existent or were not in mature state so
needed to create quick and dirty reusable libraries like async-rdbc etc
Every time a code that was compiled was rewarding since it used to
ensure something working was produced
Writing unit, integration and e2e tests provided necessory safety net
to modify features regulerly without breaking anything
Got all answeres in community forums and on community discord
servers when was I stuck

LIBRARIES USED
nom - for creating parsers and AST
tokio - As asynchronous rust runtime
hyper - for low level servers
serde and serde-json - for serialization and deserialization
clap - for cli parser
futures and future-utils - for some ready made features
with async code
async-trait - for lot of async code with traits
async-recursion - for some recursive async code
fake - for some fake data generation features
mockito - for creating test doubles for tests
And many more....

EXTENDED
DEMO

CONCLUSIONS
Overall writing a programming language in rust was very rewarding
experience
The tool created and programming language created is been used
by my past employers and present for Service Virtualisation, Test
Data Creation and Load Testing hence it had well adaptation as well
The whole Rust Ecosystem is great place for Experiments, tools and
projects like this
The feared learning curve with Rust has minimal impact as the
programmer settles with Rust it feels more rewarding to create
great code than initial struggle of fighting with language
No wonder why rust is called most loved programming language.
I consider Journey Programming Language as my best work and
feel really proud about creating something thats useful using Rust

Conf42
For opportunity to present

Rust Community
For awesome support and ecosystem

Freepik | Canva
For graphics and illustrations

THANKS

