
Unleashing the Power of Rust:
Building Safe, Fast, and Reliable
Software for the Future

The programming language that empowers

everyone to become a systems programmer.

Overview

Rust is a modern systems programming language that is quickly gaining popularity due to its
ability to build safe, fast, and reliable software.

01. Memory Management Mastery: Ownership and
Borrowing

02. Performance Amplified: Rust’s Optimization Techniques

03. Conquering Real-World Challenges: Applications of Rust

04. Conclusion: Equipped for the Future with Rust

#
#
#
#

Memory Management Mastery

Memory management has been a notorious challenge in system programming
languages. Rust has revolutionized this landscape with its ownership and borrowing
system. We'll take a deep dive into the concept of ownership, understanding how it
empowers developers to write code that's both memory-efficient and free from common
bugs like null pointer exceptions and data races. Borrowing, an integral part of Rust's
memory model, will be demystified as we unravel how it enables multiple components
of a program to interact seamlessly while adhering to the principle of data safety.

#
#
#
#

Memory Management Mastery: Memory leaks

A memory leak in a program occurs when the program unintentionally allocates
memory (usually on the heap) during its execution but fails to release or deallocate that
memory properly before the program terminates. As a result, the memory that was
allocated remains reserved and unavailable for other parts of the program or other
processes, leading to a gradual increase in memory usage over time.

#
#
#
#

Memory Management Mastery: Memory leaks

A memory leak in a program occurs when the program unintentionally allocates memory (usually on the heap)
during its execution but fails to release or deallocate that memory properly before the program terminates. As a
result, the memory that was allocated remains reserved and unavailable for other parts of the program or other
processes, leading to a gradual increase in memory usage over time.

#
#
#
#

Memory Management Mastery: Memory leaks

A memory leak in a program occurs when the program unintentionally allocates memory (usually on the heap)
during its execution but fails to release or deallocate that memory properly before the program terminates. As a
result, the memory that was allocated remains reserved and unavailable for other parts of the program or other
processes, leading to a gradual increase in memory usage over time.

#
#
#
#

Memory Management Mastery: Memory leaks

Consequences of memory leaks

● Reduced available memory
● Slower execution
● Program crashes
● Resource Saturation
● Maintenance Challenge

#
#
#
#

Memory Management Mastery: Garbage collector

Who came to the
rescue?

#
#
#
#

Memory Management Mastery: Garbage collector

The Garbage
Collector!!!

#
#
#
#

Memory Management Mastery: Garbage collector

Does the dirty work
of memory
management.

#
#
#
#

What is a Garbage collector

A garbage collector is a component of many programming languages and
runtime environments that automates the process of memory
management. Its primary purpose is to automatically reclaim memory
that is no longer needed by the program, specifically memory that has
been allocated for objects or data structures that are no longer
accessible or in use.

#
#
#
#

The Garbage Collector: Drawbacks

● Performance Overhead

● Predictability

● Resource usage

Not ideal for low latency use cases

#
#
#
#

Memory management in Rust

In comes Rust
WITHOUT a garbage collector

#
#
#
#

How does Rust handle
memory
management?

#
#
#
#

How does Rust handle memory
management?

● Ownership and Borrowing

● Lifetimes

● Ownership Transfers and Moves

#
#
#
#

Ownership and Borrowing

#
#
#
#

Ownership and Borrowing

#
#
#
#

Ownership and Borrowing

#
#
#
#

Ownership and Borrowing

#
#
#
#

Ownership and Borrowing

#
#
#
#

#
#
#
#

#
#
#
#

#
#
#
#

#
#
#
#

#
#
#
#

#
#
#
#

#
#
#
#

#
#
#
#

Ownership and Borrowing: (Multi-Threading)

#
#
#
#

Ownership and Borrowing: (Multi-Threading)

#
#
#
#

Ownership and Borrowing: (Multi-Threading)

#
#
#
#

Performance Amplified: Rust's Optimization Techniques

Rust is a systems programming language that emphasizes safety, performance, and
concurrency. It provides a variety of optimization techniques to help developers write
efficient code without sacrificing safety.

#
#
#
#

Rust's Optimization Techniques: Zero Cost Abstraction

Rust provides high-level abstractions without incurring any runtime overhead. This is
achieved through a combination of compile-time checks and optimizations. For
example, Rust's ownership and borrowing system allows the compiler to ensure
memory safety without introducing runtime garbage collection or reference counting
overhead.

#
#
#
#

Rust's Optimization Techniques: Inline Functions

The #[inline] attribute in Rust is a compiler directive that tells the compiler to inline a
function at the call site. This means that the compiler will copy the body of the function
into the caller's code, instead of calling the function as a separate entity. This can
improve performance by eliminating the overhead of the function call, such as the
stack frame setup and tear down.

The compiler will not always inline a function that is marked with the #[inline] attribute.
The compiler will make a decision based on a number of factors, such as the size of
the function, the optimization level, and the target architecture.

#
#
#
#

Rust's Optimization Techniques: Inline Functions

#
#
#
#

Rust's Optimization Techniques: Constant Propagation

Constant propagation is an optimization technique that the Rust compiler uses
to replace expressions that evaluate to constants with their actual values. This
can improve performance by eliminating the need to evaluate the expressions
at runtime.

The Rust compiler can propagate constants through expressions in a number
of ways. For example, if an expression contains a variable that has been
assigned a constant value, the compiler can replace the variable with its value.
The compiler can also propagate constants through arithmetic operations,
such as addition and multiplication.

#
#
#
#

Rust's Optimization Techniques: const & static
Constants:

In Rust, constants are defined using the const keyword and must have a fixed,

compile-time evaluable value. They are usually used for values that are known

at compile-time and won't change during program execution. Since constants

are evaluated at compile-time, the compiler can substitute their values directly

into the expressions where they are used, reducing the need for runtime

calculations.

#
#
#
#

Rust's Optimization Techniques: const & static
Static Variables:

Static variables are values that are allocated once and persist throughout the

entire program's execution. They are defined using the static keyword and can

also contribute to constant propagation optimizations.

#
#
#
#

Rust's Optimization Techniques: const & static

By utilizing constants and static variables, Rust's compiler can

perform various optimizations, including constant propagation,

which can lead to more efficient generated code. These

optimizations can eliminate unnecessary runtime calculations and

improve the overall performance of Rust programs.

#
#
#
#

Conquering Real-World Challenges: Applications of Rust

Operating Systems:

Rust's emphasis on memory safety and absence of null pointers makes

it an attractive choice for building operating systems. The ability to

write low-level systems code without sacrificing safety is a

game-changer. Notable projects include Redox OS and Tock OS.

Microsoft is also rewriting core window libraries in Rust

#
#
#
#

Conquering Real-World Challenges: Applications of Rust

Web Server Development:

Rust's performance and safety features make it suitable for building

high-performance and secure web servers. Projects like Actix and

Rocket provide frameworks that leverage Rust's concurrency model

and memory safety to develop robust web applications.

#
#
#
#

Conquering Real-World Challenges: Applications of Rust

Other Applications of rust

● Databases

● Game Development

● Embedded Systems

● Blockchain and Cryptocurrency

● Networking

#
#
#
#

Thank you!

Remember, with great power comes
great responsibility

#
#
#
#

