
Rust for Numerical 
Applications

Felipe Zapata



Who Am I?

● I’m a software engineer with a background in scientific 
simulation, specifically in physical chemistry

● I develop autonomous trading system using Rust and 
Python



Need for Speed

● Science
● Finance
● Engineering



Why Rust for Numerical applications?

● It is blazingly fast
● The tooling is amazing (bye bye CMake)
● The borrow-checker is your friend
● The ecosystem got your back covered



The General Algorithm

“I firmly believe that intelligence is just a 
robust methodology to recursively 

improve my stupidity”



Numerical Applications Recipe



Baby Steps

● Use Clippy
● Don’t fight the borrow checker
● Use battle-tested libraries for 

performance-critical operations



Numerical Applications Recipe



Identify the Bottleneck

● Don’t trust your instincts: 
measure!

● Use a profiler tool like Perf 
● Visualize Perf output with 

FlameGraphs

https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://www.brendangregg.com/flamegraphs.html


(rust-) Flamegraph



Numerical Applications Recipe



Numerical Applications Recipe



Benchmark: Use criterion



Optimizations

● Choose the right algorithm
● Do your math homework
● Pre-allocate your vectors: Vec::with_capacity
● Use a non-cryptographic hash algorithm for HashMap
● Have a look at the Rust perf-book

https://nnethercote.github.io/perf-book/


Benchmarking
First criterion run

Apply optimization and run again

Let’s try another optimization

https://docs.rs/criterion/latest/criterion/


Numerical Applications Recipe



Test

● Ask your favorite LLM to generate unit tests for you
● Check edge cases
● Use a property testing framework like Proptest

https://proptest-rs.github.io/proptest/intro.html


Proptest



A Floating Point Errors Footnote 
● Floating-point numbers cannot 

represent all real-numbers accurately 
(rounding errors)

● Rounding errors can accumulate
● Check rust_decimal for financial 

calculations

https://crates.io/crates/rust-decimal


Third-party Libraries

Shall I use an external dependency or shall I cook my own 
recipe for a given algorithm?

● How central is this algorithm in your calculation?
● How confident are you about implementing the algorithm?
● Are you willing to maintain it?
● What is the quality of the external dependency?



Third-party Libraries

Rule of Thumb: 

For other-than-trivial algorithms, use a third-party library - 
even if it is written in C/C++



Some Pearls for Numerical Applications
● Rust-ndarray family : array manipulation, statistics, linear 

algebra, etc.
● Rayon: data-parallelism
● Polars: Lighting-fast Dataframe library
● Rustc-hash: A fast non-cryptographic hash algorithm
● Approx: Testing floats approximate equality
● Ordered_float: Wrappers for total order on floats

https://github.com/rust-ndarray
https://github.com/rayon-rs/rayon
https://www.pola.rs/
https://github.com/rust-lang/rustc-hash
https://docs.rs/approx/latest/approx/
https://docs.rs/ordered-float/latest/ordered_float/


Rust, Python and Maturin

● Numerical workflows are commonly written in Python
● You can easily integrate Rust with Python through Maturin
● Getting familiar with Python numerical ecosystem would 

greatly benefit your Rust project

https://www.maturin.rs/


Thank You!
Questions?

linkedin.com/in/felipe-zapata

f.zapata@altastechnologies.com

https://www.linkedin.com/in/felipe-zapata
mailto:f.zapata@altastechnologies.com

