reveal.js http://localhost:8000/

Falling in LOVE with Unit Testing

Joe Skeen

Slides live at https://world-class-engineers.github.io/conf42-rustlang-2023-
unit-testing

LB,

WORLD-CLASS

1 of 42 8/18/23, 13:02

https://world-class-engineers.github.io/conf42-rustlang-2023-unit-testing
https://world-class-engineers.github.io/conf42-rustlang-2023-unit-testing
https://world-class-engineers.github.io/conf42-rustlang-2023-unit-testing
https://world-class-engineers.github.io/conf42-rustlang-2023-unit-testing

reveal.js

2 0f42

Unit testing provides benefits

Early bug detection
Regression prevention
Continuous Integration
Refactoring support
Better design

Better code quality
Living Documentation
and more!

LB,

WORLD-CLASS

http://localhost:8000/

8/18/23, 13:02

reveal.js

3 0f42

The more effort | put into testing the product
conceptually at the start of the process, the less effort |
[have] to put into manually testing the product at the
end because fewer bugs ... emerge as a result.

Trish Khoo, Director of Engineering at Octopus Deploy

LB,

WORLD-CLASS

http://localhost:8000/

8/18/23, 13:02

reveal.js http://localhost:8000/

Unit testing friction

» Forcedto do it
» Not allowed the time
» Never learned how to do it well

LB,

WORLD-CLASS

4 of 42 8/18/23, 13:02

reveal.js

5o0f42

My Journey

Cognrghted Matesial

the art of

it

ll MANNING

ROY OSHEROVE

Cognvighted Matesial

(no@pnsor)

WORLD-CLASS

ENGINEERS

http://localhost:8000/

8/18/23, 13:02

reveal.js http://localhost:8000/

vm
WORLD-CLASS

ENGINEERS

6 of 42 8/18/23, 13:02

reveal.js

7 of 42

What is a unit test?

" ELGUE]L
Testing

more Tests

integration E2E, Native Ul Tests
On Critical Flows

Integrate and test units
to work together

/ Integration Tests

slower

/

/

/
. Unit Tests
isolation vy Building small testable units

v

N

faster

Credit: Moke Cohn, Martin Fowler, and Lawrence Tan

vm
WORLD-CLASS

ENGINEERS

http://localhost:8000/

8/18/23, 13:02

reveal.js http://localhost:8000/

Key 1: Break it down!

LB,

WORLD-CLASS

8 of 42 8/18/23, 13:02

reveal.js http://localhost:8000/

image by craiyon.com

——d
WORLD-CLASS

ENGINEERS

9 of42 8/18/23, 13:02

reveal.js http://localhost:8000/

Privacy Knob Mockup

Image from Amazon (not a sponsor) Outside Knob

Inside Knob

WORLD-CLASS

ENGINEERS

10 of 42 8/18/23, 13:02

reveal.js http://localhost:8000/

A privacy doorknob, when the push button is not

pressed, when the user turns the inside knob, should
also turn the outside knob.

GIVEN the push button is not pressed
WHEN the user turns the inside knob
THEN the outside knob should also turn

vm
WORLD-CLASS

11 of 42 8/18/23, 13:02

reveal.js http://localhost:8000/

A privacy doorknob, when the push button is not
pressed, when the user turns the inside knob, should
also turn the outside knob.

A privacy doorknob, when the push button is not
pressed, when the user turns the inside knob, should
retract the latch bolt.

LB,

WORLD-CLASS

12 of 42 8/18/23, 13:02

reveal.js http://localhost:8000/

A privacy doorknob, when the push button is not
pressed, when the user turns the inside knob
clockwise, should also turn the outside knob
counterclockwise.

A privacy doorknob, when the push button is not
pressed, when the user turns the inside knob
counterclockwise, should also turn the outside knob
clockwise.

LB,

WORLD-CLASS

13 of 42 8/18/23, 13:02

reveal.js

14 of 42

A privacy doorknob, when the push button is not
pressed, when the user turns the outside knob
clockwise, should also turn the inside knob
counterclockwise.

A privacy doorknob, when the push button is not
pressed, when the user turns the outside knob
counterclockwise, should also turn the inside knob
clockwise.

A privacy doorknob, when the push button is not
pressed, when the user turns the outside knob, should
retract the latch bolt.

LB,

WORLD-CLASS

http://localhost:8000/

8/18/23, 13:02

reveal.js http://localhost:8000/

A privacy doorknob, when the push button is not
pressed, when the user turns the inside knob clockwise,
should also turn the outside knob counterclockwise.

A privacy doorknob, when the push button is not
pressed, when the user turns the inside knob
counterclockwise, should also turn the outside knob
clockwise.

A privacy doorknob, when the push button is not
pressed, when the user turns the inside knob, should
retract the latch bolt.

A privacy doorknob, when the push button is not
pressed, when the user turns the outside knob
clockwise, should also turn the inside knob

qmggckwise.

15 of 42 8/18/23, 13:02

reveal.js http://localhost:8000/

A privacy doorknob, when the push button is not
pressed, when the user turns the outside knob
counterclockwise, should also turn the inside knob
clockwise.

A privacy doorknob, when the push button is not
pressed, when the user turns the outside knob, should
retract the latch bolt.

LB,

WORLD-CLASS

16 of 42 8/18/23, 13:02

reveal.js http://localhost:8000/

Key 2: Care about test code quality
i.e. DRY

LB,

WORLD-CLASS

17 of 42 8/18/23, 13:02

reveal.js

18 of 42

A privacy doorknob,

when the push button is not pressed,

when the user turns the inside knob clockwise,

should also turn the outside knob counterclockwise.
should retract the latch bolt.

when the user turns the inside knob counterclockwise,
should also turn the outside knob clockwise.

should retract the latch bolt.

when the user turns the outside knob clockwise,
should also turn the inside knob counterclockwise.
should retract the latch bolt.

when the user turns the outside knob counterclockwise,
should also turn the inside knob clockwise.

should retract the latch bolt.

LB,

WORLD-CLASS

http://localhost:8000/

8/18/23, 13:02

reveal.js

v

19 of 42

A privacy doorknob,

when the push button is pressed,

when the user tries to turn the outside knob clockwise,
should not turn the outside knob at all.

should not turn the inside knob at all.

should not retract the latch bolt.

when the user tries to turn the outside knob counterclockwise,
should not turn the outside knob at all.

should not turn the inside knob at all.

should not retract the latch bolt.

when the user tries to turn the inside knob clockwise,

should pop the push button out.

should turn the inside knob clockwise.

should turn the outside knob counterclockwise.

should retract the latch bolt.

when the user tries to turn the inside knob counterclockwise,
shoed pop the push button out.

steeLAdtgsn the inside knob counterclockwise.

http://localhost:8000/

8/18/23, 13:02

reveal.js http://localhost:8000/

> should turn the outside knob clockwise.
> should retract the latch bolt.

LB,

WORLD-CLASS

20 of 42 8/18/23, 13:02

reveal.js http://localhost:8000/

Other use cases

A privacy doorknob,

when the push button is pressed,

when the user tries to close the door (press the latch bolt)

should retract the latch bolt.

when the user inserts a long pin into the hole on the outside knob,
should pop the push button out.

v

|

O

U

LB,

WORLD-CLASS

21 of 42 8/18/23, 13:02

reveal.js http://localhost:8000/

Exceptional use cases

A privacy doorknob,

when the button is pressed,

when the user uses excessive force to try to turn the outside knob,
the knob should not break.

v

|

LB,

WORLD-CLASS

22 of 42 8/18/23, 13:02

reveal.js http://localhost:8000/

Key 3: Focus on what matters

LB,

WORLD-CLASS

23 of 42 8/18/23, 13:02

reveal.js http://localhost:8000/

Key 4: Use AAA

LB,

WORLD-CLASS

24 of 42 8/18/23, 13:02

reveal.js http://localhost:8000/

» Arrange: Initialize object, set properties
» Act: Call the function you are testing
» Assert: Verify the results

LB,

WORLD-CLASS

25 of 42 8/18/23, 13:02

reveal.js http://localhost:8000/

Enough talk, let's see the code!

LB,

WORLD-CLASS

26 of 42 8/18/23, 13:02

reveal.js http://localhost:8000/

pub struct PrivacyDoorKnob {
button is pushed: bool,
}
impl PrivacyDoorKnob {
fn new() -> PrivacyDoorKnob { /*TODO*/ }
pub fn turn_inside knob(&mut self, direction: RotationDirection) -> KnobInteractionResult { /*TODO*/ }
pub fn turn outside knob(&self, direction: RotationDirection) -> KnobInteractionResult { /*TODO*/ }
pub fn insert pin into outside knob hole(&mut self) { /*TODO*/ }
pub fn is button pressed(&self) -> bool { /*TODO*/ }
pub fn press button(&mut self) { /*TODO*/ }

}

#[derive(PartialEq, Debug)]

struct KnobInteractionResult {
inside knob: Option<RotationDirection>,
outside knob: Option<RotationDirection>,
latch bolt: LatchBoltState,

}

#[derive(PartialEq, Debug)]

enum RotationDirection {
Clockwise,
Counterclockwise,

}

impl RotationDirection {
fn opposite(&self) -> RotationDirection { /*TODO*/ }

}

HlAarivial(Dar+ialEn Nahiin)1

vm
WORLD-CLASS

ENGINEERS

27 of 42 8/18/23, 13:02

reveal.js http://localhost:8000/

#[cfg(test)]
mod tests {
use super::*;

}

vm
WORLD-CLASS

ENGINEERS

28 of 42 8/18/23, 13:02

reveal.js

29 of 42

#[cfg(test)]
mod tests {
use super:

K.
. ’

// * A privacy doorknob,

// * when the push button is pressed,
// * when the user tries to turn the outside knob clockwise,
// * should not turn the outside knob at all.
// * should not turn the inside knob at all.
// * should not retract the latch bolt.
// * when the user tries to turn the outside knob counterclockwise,
// * should not turn the outside knob at all.
// * should not turn the inside knob at all.
// * should not retract the latch bolt.
// * when the user tries to turn the inside knob clockwise,
// * should pop the push button out.
// * should turn the inside knob clockwise.
// * should turn the outside knob counterclockwise.
// * should retract the latch bolt.
// * when the user tries to turn the inside knob counterclockwise,
// * should pop the push button out.
// * should turn the inside knob counterclockwise.
// * should turn the outside knob clockwise.
// * should retract the latch bolt.

}

B,

WORLD-CLASS

ENGINEERS

http://localhost:8000/

8/18/23, 13:02

reveal.js http://localhost:8000/

#[cfg(test)]
mod tests {
use super::*;

mod when the push button is pressed {
use super::*;

mod when the user tries to turn the outside knob clockwise {
use super::*;

#[test]
fn should not turn the outside knob at all() { /* TODO */ }
#[test]
fn should not turn the inside knob at all() { /* TODO */ }
#[test]
fn should not retract the latch bolt() { /* TODO */ }
}
// * when the user tries to turn the outside knob counterclockwise,
// * should not turn the inside knob at all.
// * should not retract the latch bolt.
// * when the user tries to turn the inside knob clockwise,
// * should pop the push button out.
// * should turn the inside knob clockwise.
// * should turn the outside knob counterclockwise.
// * should retract the latch bolt.
// X wihan +ha 11icar +rinc +n +1irn +tha incida bnah FrAaiintarclAaclhaticn
vm
WORLD-CLASS

ENGINEERS

30 of 42 8/18/23, 13:02

reveal.js http://localhost:8000/

#[test]

fn should not turn the outside knob at all() {
// Arrange
let mut knob = PrivacyDoorKnob::new();
knob.press button();

// Act
let result = knob.turn outside knob(RotationDirection::Clockwise);

// Assert
assert eq!(result.outside knob, None);

}

#[test]

fn should not turn the inside knob at all() {
// Arrange
let mut knob = PrivacyDoorKnob::new();
knob.press button();

// Act
let result = knob.turn outside knob(RotationDirection::Clockwise);
// Assert
assert eq!(result.inside knob, None);
}
#[test]

fn should not retract the latch bolt() {

// ANrrannno

vm
WORLD-CLASS

ENGINEERS

31 of 42 8/18/23, 13:02

reveal.js http://localhost:8000/

test privacy door knob::tests::when the push button is pressed::when the user tries to turn the outside
test privacy door knob::tests::when the push button is pressed::when the user tries to turn the outside
test privacy door knob::tests::when the push button is pressed::when the user tries to turn the outside

vm
WORLD-CLASS

ENGINEERS

32 of 42 8/18/23, 13:02

reveal.js http://localhost:8000/

#[cfg(test)]
mod tests {
use super::*;

mod when the push button is pressed {
use super::*;

mod when the user tries to turn the outside knob clockwise {
use super::*;

fn action(knob: &mut PrivacyDoorKnob) -> KnobInteractionResult {
knob.turn outside knob(RotationDirection::Clockwise)

}

#[test]

fn should not turn the outside knob at all() {
// Arrange
let mut knob = PrivacyDoorKnob: :new();
knob.press button();

// Act
let result = action(&mut knob);
// Assert
assert eq!(result.outside knob, None);

}

#[test]

fn chnaiild nAat+t +iirn +tha incida Lnnh a+ 2117 /(\

vm
WORLD-CLASS

ENGINEERS

33 of 42 8/18/23, 13:02

reveal.js http://localhost:8000/

#[cfg(test)]
mod tests {
use super::*;

mod when the push button is pressed {
use super::*;

fn arrange() -> PrivacyDoorKnob {
let mut knob = PrivacyDoorKnob: :new();
knob.press button();
knob

}

mod when the user tries to turn the outside knob clockwise {
use super::*;

fn action(knob: &mut PrivacyDoorKnob) -> KnobInteractionResult {
knob.turn outside knob(RotationDirection::Clockwise)

}

#[test]

fn should not turn the outside knob at all() {
// Arrange
let mut knob = arrange();

// Act
let result = action(&mut knob);

// ANccort+

vm
WORLD-CLASS

ENGINEERS

34 of 42 8/18/23, 13:02

reveal.js http://localhost:8000/

#[cfg(test)]
mod tests {
use super::*;

mod when the push button is pressed {
use super::*;

fn arrange() -> PrivacyDoorKnob {
let mut knob = PrivacyDoorKnob: :new();
knob.press button();
knob

}

mod when the user tries to turn the outside knob clockwise {
use super::*;

fn action(knob: &mut PrivacyDoorKnob) -> KnobInteractionResult {
knob.turn outside knob(RotationDirection::Clockwise)

}

#[test]

fn should not turn the outside knob at all() {
let result = action(&mut arrange());
assert eq!(result.outside knob, None);

}

#[test]
fn should not turn the inside knob at all() {

1o+ rocul+ — ar+inan(Smuut+ arrannnl).

vm
WORLD-CLASS

ENGINEERS

35 of 42 8/18/23, 13:02

reveal.js http://localhost:8000/

#[cfg(test)]
mod tests {
use super::*;

mod when the push button is pressed {
use super::*;

fn arrange() -> PrivacyDoorKnob {
let mut knob = PrivacyDoorKnob: :new();
knob.press button();
knob

}

mod when the user tries to turn the outside knob clockwise {
use super::*;

fn action(knob: &mut PrivacyDoorKnob) -> KnobInteractionResult {
knob.turn outside knob(RotationDirection::Clockwise)

}

macro_rules! it {
($name:ident, $field:ident, $value:expr) => {
#[test]
fn $name() {
let result = action(&mut arrange());
assert eq!(result.$field, $value);
}
b

1

vm
WORLD-CLASS

ENGINEERS

36 of 42 8/18/23, 13:02

reveal.js http://localhost:8000/

#[cfg(test)]
mod tests {
use super::*;

macro_rules! it {
($name:ident, $arrange:ident, $action:ident, $field:ident, $value:expr) => {
#[test]
fn $name() {
let result = $action(&mut $arrange());
assert eq!(result.$field, $value);
}
b
}

mod when the push button is pressed {
use super::*;

fn arrange() -> PrivacyDoorKnob {
let mut knob = PrivacyDoorKnob: :new();
knob.press button();
knob

}

mod when the user tries to turn the outside knob clockwise {
use super::*;

fn action(knob: &mut PrivacyDoorKnob) -> KnobInteractionResult {

knob.turn outside knob(RotationDirection::Clockwise)
1

vm
WORLD-CLASS

ENGINEERS

37 of 42 8/18/23, 13:02

reveal.js http://localhost:8000/

#[cfg(test)]
mod tests {
use super::*;

macro_rules! it {
($name:ident, $arrange:ident, $action:ident, $assertion:expr) => {
#[test]
fn $name() {
let result = $action(&mut $arrange());
$assertion(result);
}
b
}

mod when the push button is pressed {
use super::*;

fn arrange() -> PrivacyDoorKnob {
let mut knob = PrivacyDoorKnob: :new();
knob.press button();
knob

}

mod when the user tries to turn the outside knob clockwise {
use super::*;

fn action(knob: &mut PrivacyDoorKnob) -> KnobInteractionResult {

knob.turn outside knob(RotationDirection::Clockwise)
1

vm
WORLD-CLASS

ENGINEERS

38 of 42 8/18/23, 13:02

reveal.js http://localhost:8000/

#[cfg(test)]
mod tests {
use super::*;

macro_rules! it {
($name:ident, $arrange:ident, $action:ident, $assertion:expr) => {
#[test]
fn $name() {
let result = $action(&mut $arrange());
$assertion(result);
}
b
}

mod when the push button is pressed {
use super::*;

fn arrange() -> PrivacyDoorKnob {
let mut knob = PrivacyDoorKnob: :new();
knob.press button();
knob

}

mod when the user tries to turn the outside knob clockwise {
use super::*;

fn action(knob: &mut PrivacyDoorKnob) -> KnobInteractionResult {

knob.turn outside knob(RotationDirection::Clockwise)
1

vm
WORLD-CLASS

ENGINEERS

39 of 42 8/18/23, 13:02

reveal.js http://localhost:8000/

Don't get carried away

fn remove vowels(input: String) -> String {/* TODO */}
Test:

the empty String

a small string with some vowels

a small string with only vowels

a small string with no vowels

a very large String

a string with complex unicode characters (i.e. emoji)

LB,

WORLD-CLASS

40 of 42 8/18/23, 13:02

reveal.js http://localhost:8000/

Vm
WORLD-CLASS

ENGINEERS

41 of 42 8/18/23, 13:02

reveal.js http://localhost:8000/

Go forth and unit test!

Contact me:
joe@worldclassengineers.dev

Thanks for watching!

Speaker notes

LB,

WORLD-CLASS

42 of 42 8/18/23, 13:02

mailto:joe@worldclassengineers.dev
mailto:joe@worldclassengineers.dev

