
LanceDB: Writing a Vector Database in Rust

LanceDB

LanceDB.com

Blazing Fast Vector Search, SQL, Full Text
Search

Multi-model data: Vector, Image, Text,
Videos

Written in Rust, with Python and
Typescript SDKs

Open-Source In-process
Vector Database

Cloud-native. Data and Vector Index
directly stored on cloud storage

Backed by Lance columnar format, also
written in Rust. Apache Arrow compatible

A Bit Of History of LanceDB

LanceDB.com

Built core Lance Columnar Format in C++

A Bit Of History of LanceDB

LanceDB.com

Built core Lance Columnar Format in C++

A Bit Of History of LanceDB

LanceDB.com

Let's do it again.
Re-write in Rust in Jan 2023

Performance is GREAT
Community is GREAT
Productivity is GREAT
Ecosystem is GREAT

We love Rust!
Even w/ zero Rust experience

LanceDB.com

Cargo >>> Cmake
Easy to link to high-quality libraries

Beautiful Language: compiler error, modules, traits,
functional programming, built-in test/bench/docs
practice.
Native language, easily embedded in other languages
An extensive std library, especially std::arch for SIMD

So, What is a Vector Database

LanceDB.com

LanceDB.com

What is Vector Database

Search K Nearest Neighbours in High-
Dimensional Vector Space

10^2 - 10^3 dimensions
Diff to traditional DB

Linear (1D) space: b-tree or hash
Applications:

ML Model Embeddings
LLM, Image Generation,

LanceDB.com

Application: Text-To-Image Recommendation

Use OpenAI CLIP Model

Typical Dataset in LanceDB

Dimension 768 ~ 1536

of Vectors 500K ~ 1 Billion

Data Types [float32] + metadata

LanceDB.com

Challenges

Curse of dimensionality*
Speed or Accuracy: Pick one
Especially difficult if everything
is stored on S3*

 * Curse of dimensionality, https://en.wikipedia.org/wiki/Curse_of_dimensionality
 * Latency Numbers Every Programmer Should Know
https://colin-scott.github.io/personal_website/research/interactive_latency.html

https://en.wikipedia.org/wiki/Curse_of_dimensionality

LanceDB.com

Build Vector Index in Rust: IVF_PQ

Voronoi Cells

Vector Index to Speed Up
But less accurate!

Divide Space into Voronoi Cells
K-means

Use Product Quantization (PQ)
to compress vectors

https://en.wikipedia.org/wiki/Curse_of_dimensionality

LanceDB.com

Yet Another KMean in Rust!
(1/2)

It is not a joke!
We manually tuned KMean with std::arch
SIMD on X86_64 and aarch64

L1/L2 cache friendly, loop unrolling
Adaptive Sampling
Use Apache Arrow (arrow-rs) in memory
Faster than Numpy, Arrow, LLVM-auto-
vectorization, and other benchmarks

https://en.wikipedia.org/wiki/Curse_of_dimensionality

LanceDB.com

Yet Another KMean in Rust!
(2/2)

What we LOVE about Rust:
Feature flag (#[cfg(...)) and #[inline]
Rich instruction sets in std::arch
Module for multi-arch code organization
cargo bench
cargo flamegraph
rust.godbolt.org

What we wish that Rust (stable) has:
Generic specification

https://en.wikipedia.org/wiki/Curse_of_dimensionality

I/O is tricky too!

LanceDB.com

LanceDB.com

No linear indexing = Scan!

Voronoi Cells

Disk space is linear, which can not
present multi-dimensional distance
statically and efficiently.
Vector distance depends dynamically
on the Query Vector

Scan a lot from the disk for every
different query

Much random I/O to accommodate PQ
distortion

https://en.wikipedia.org/wiki/Curse_of_dimensionality

LanceDB.com

IVF PQ Index On-Disk Layout

Optimize for scan and SIMD
Each block is an arrow-rs array

Use IVF centroids to decide which
partitions to scan
Work nicely on local SSD and cloud
object store

Different cache strategies
Rust is much easier to work with
multi-clouds than C++

https://en.wikipedia.org/wiki/Curse_of_dimensionality

How about SQL and Full Text
Search?

LanceDB.com

LanceDB.com

SQL and Full Text Search

Built on Lance, fastest growning columnar format
 2000x faster point query than Parquet

SQL engine
sqlparser-rs and datafusion

Full Text Search
tantivy, w/ customizations

Async-io:
tokio + futures + object_store

https://en.wikipedia.org/wiki/Curse_of_dimensionality

But, How Can I Use it

LanceDB.com

LanceDB.com

Did we mention that LanceDB is In-Process DB?

No server, No K8S
Disk-based index, no huge server to load everything in memory
Python and Typescript native SDK

PyO3 and Neon
cargo install vectordb

https://en.wikipedia.org/wiki/Curse_of_dimensionality

LanceDB.com

LanceDB is In-Process DB

https://en.wikipedia.org/wiki/Curse_of_dimensionality

LanceDB.com

LanceDB is In-Process DB

Voronoi Cells

Realistically, only three languages can be used to build
a multi-language in-process database

C
C++
Rust

The choice is obvious :)

https://en.wikipedia.org/wiki/Curse_of_dimensionality

LanceDB.com

LanceDB Cloud

Just change the URL to "db://..."
Pay-per-query
Fully managed

https://en.wikipedia.org/wiki/Curse_of_dimensionality

Thank You

contact@lancedb.com

Your feedback is important to us!

 https://github.com/lancedb/lancedb (please
give us a ⭐)

mailto:contact@eto.ai
https://github.com/eto-ai/lance

