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Blazing Fast Vector Search, SQL, Full Text
Search

Multi-model data: Vector, Image, Text,
Videos

Written in Rust, with Python and
Typescript SDKs

Open-Source In-process
Vector Database

Cloud-native. Data and Vector Index
directly stored on cloud storage

Backed by Lance columnar format, also
written in Rust. Apache Arrow compatible



A Bit Of History of LanceDB
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Built core Lance Columnar Format in C++
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Let's do it again.
Re-write in Rust in Jan 2023

Performance is GREAT
Community is GREAT
Productivity is GREAT
Ecosystem is GREAT



We love Rust! 
Even w/ zero Rust experience
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Cargo >>> Cmake
Easy to link to high-quality libraries

Beautiful Language: compiler error, modules, traits,
functional programming, built-in test/bench/docs
practice.
Native language, easily embedded in other languages
An extensive std library, especially std::arch for SIMD



So, What is a Vector Database
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What is Vector Database

Search K Nearest Neighbours in High-
Dimensional Vector Space

10^2 - 10^3 dimensions
Diff to traditional DB

Linear (1D) space: b-tree or hash
Applications:

ML Model Embeddings
LLM, Image Generation,
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Application: Text-To-Image Recommendation

Use OpenAI CLIP Model



Typical Dataset in LanceDB

Dimension 768 ~ 1536

# of Vectors 500K ~ 1 Billion

Data Types [float32] + metadata
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Challenges

Curse of dimensionality*
Speed or Accuracy: Pick one
Especially difficult if everything
is stored on S3*

 * Curse of dimensionality, https://en.wikipedia.org/wiki/Curse_of_dimensionality
 * Latency Numbers Every Programmer Should Know
https://colin-scott.github.io/personal_website/research/interactive_latency.html

https://en.wikipedia.org/wiki/Curse_of_dimensionality
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Build Vector Index in Rust: IVF_PQ

Voronoi Cells

Vector Index to Speed Up
But less accurate!

Divide Space into Voronoi Cells
K-means

Use Product Quantization (PQ)
to compress vectors

https://en.wikipedia.org/wiki/Curse_of_dimensionality
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Yet Another KMean in Rust!
(1/2)

It is not a joke!
We manually tuned KMean with std::arch
SIMD on X86_64 and aarch64

L1/L2 cache friendly, loop unrolling
Adaptive Sampling
Use Apache Arrow (arrow-rs) in memory
Faster than Numpy, Arrow, LLVM-auto-
vectorization, and other benchmarks

https://en.wikipedia.org/wiki/Curse_of_dimensionality
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Yet Another KMean in Rust!
(2/2)

What we LOVE about Rust:
Feature flag (#[cfg(...)) and #[inline]
Rich instruction sets in std::arch
Module for multi-arch code organization
cargo bench
cargo flamegraph
rust.godbolt.org

What we wish that Rust (stable) has:
Generic specification 

https://en.wikipedia.org/wiki/Curse_of_dimensionality


I/O is tricky too!
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No linear indexing = Scan!

Voronoi Cells

Disk space is linear, which can not
present multi-dimensional distance
statically and efficiently.
Vector distance depends dynamically
on the Query Vector

Scan a lot from the disk for every
different query

Much random I/O to accommodate PQ
distortion 

https://en.wikipedia.org/wiki/Curse_of_dimensionality
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IVF PQ Index On-Disk Layout

Optimize for scan and SIMD
Each block is an arrow-rs array

Use IVF centroids to decide which
partitions to scan
Work nicely on local SSD and cloud
object store

Different cache strategies
Rust is much easier to work with
multi-clouds than C++

https://en.wikipedia.org/wiki/Curse_of_dimensionality


How about SQL and Full Text
Search?
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SQL and Full Text Search

Built on Lance, fastest growning columnar format
 2000x faster point query than Parquet

SQL engine
sqlparser-rs and datafusion

Full Text Search
tantivy, w/ customizations

Async-io:  
tokio + futures + object_store

https://en.wikipedia.org/wiki/Curse_of_dimensionality


But, How Can I Use it
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Did we mention that LanceDB is In-Process DB?

No server, No K8S
Disk-based index, no huge server to load everything in memory 
Python and Typescript native SDK

PyO3 and Neon
cargo install vectordb 

https://en.wikipedia.org/wiki/Curse_of_dimensionality
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LanceDB is In-Process DB

https://en.wikipedia.org/wiki/Curse_of_dimensionality
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LanceDB is In-Process DB

Voronoi Cells

Realistically, only three languages can be used to build
a multi-language in-process database

C
C++ 
Rust

The choice is obvious :) 

https://en.wikipedia.org/wiki/Curse_of_dimensionality
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LanceDB Cloud

Just change the URL to "db://..."
Pay-per-query
Fully managed

https://en.wikipedia.org/wiki/Curse_of_dimensionality


Thank You

contact@lancedb.com

Your feedback is important to us!
 

       https://github.com/lancedb/lancedb (please
give us a ⭐) 

 

mailto:contact@eto.ai
https://github.com/eto-ai/lance



