
Turning Smart Contracts into
Indexers with

Cross-Compilation in Rust
Conf42 Rustlang 2023

Michael Birch

Goals

● Show functional programming (FP) patterns in Rust
● Resulting code is:

○ Easier to test, maintain
○ Easier to re-use

● Case example:
○ shared codebase for a smart contract and indexer

Outline

● Blockchain basics
○ Jargon quick start
○ Smart contracts
○ Indexers

● Key Rust concepts
○ Compilation targets
○ Type generics

● Case example: Aurora Engine
● Conclusion

● Blockchain: append-only data structure with tamper-proof history
● Individual data chunks called blocks

Blockchain basics: Jargon quick start

Blockchain basics: Jargon quick start

● Transaction: data element within a block
● Transactions are interpreted inside a VM to cause state transitions

Tx 13
Tx 14
Tx 15
Tx 16

Tx 9
Tx 10
Tx 11
Tx 12

Tx 5
Tx 6
Tx 7
Tx 8

Tx 1
Tx 2
Tx 3
Tx 4

State State’ State’’ State’’’VM VM VM VM

Blockchain basics: Smart contracts

● Smart contract: program for the VM of a blockchain platform
● Transactions may invoke a method of a smart contract

Tx 2:
Call

contract.foo()

State

[contract] VM

Tx 1:
Deploy
contract

State

VM

contract

fn foo()

Blockchain basics (continued)

● Blockchain platform: a distributed blockchain continuously built by
decentralized participants (nodes) from user-submitted transactions

● Nodes eventually agree on the blockchain via a consensus algorithm

Node

Node

Node Node

Node

Node

Blockchain basics (continued)

● Users interact with a blockchain platform via an RPC
○ Either by running their own node or using a service provider

Node

Node

Node Node

Node

Node

RPC

Blockchain basics: Indexers

● Indexer: off-chain program creating a
specialized view of the state

○ Addresses problem of some queries being
too slow via RPC

● Example: block explorers index tokens
for users

Blockchain basics: Indexers

● Indexers help create low-latency (web2-like) experiences for users

Application UI Indexer RPC

● Same code both a smart contract and its own indexer
○ Lower maintenance
○ Uses beyond state query

Idea: Turning smart contracts into indexers

Indexer

Smart contract

Source code

Key Rust concepts: Compilation targets

● Rust allows compiling different kinds of output
○ https://rust-lang.github.io/rustup/cross-compilation.html
○ https://doc.rust-lang.org/nightly/rustc/platform-support.html

$ rustup target add wasm32-unknown-unknown

$ cargo build --release –-target wasm32-unknown-unknown

https://rust-lang.github.io/rustup/cross-compilation.html
https://doc.rust-lang.org/nightly/rustc/platform-support.html

Key Rust concepts: Compilation targets

● Conditional compilation can handle platform-specific logic
○ https://doc.rust-lang.org/reference/conditional-compilation.html

● Drawbacks: verbose, tedious with IDEs

fn foo() {

 #[cfg(target_arch = "wasm32")]

 foo_for_wasm();

 #[cfg(not(target_arch = "wasm32"))]

 foo_for_generic_arch();

}

https://doc.rust-lang.org/reference/conditional-compilation.html

Key Rust concepts: Type generics

● Write code generic over an interface using type generics and trait bounds

trait IO {

 fn read(&self, key: &[u8]) -> Vec<u8>;

 fn write(&mut self, key: &[u8], value: &[u8]);

}

fn get_balance<I: IO>(io: &I, user: User) -> u128 {

 u128::from_be_bytes(&io.read(&user.id()))

}

Key Rust concepts: Type generics

● Include an implementation for the trait in both targets
● Reuse the generic code in both smart contract and indexer

// indexer/src/main.rs

struct IndexerIO { ... }

impl IO for IndexerIO { ... }

fn main() {
 let io = IndexerIO::new();
 let balance = get_balance(&io, user);
 ...
}

// contract/src/lib.rs

struct WasmIO { ... }

impl IO for WasmIO { ... }

fn method_entry_point() {
 let io = WasmIO::new();
 let balance = get_balance(&io, user);
 ...
}

Aside: Patterns from functional programming (FP)

● Pure code does not depend on the environment
○ I.e. no target-specific effects

● Factoring out target-specific effects as generics
makes code easier to test and maintain

FP Core
(generic, pure)

Light wrapper
(with trait

implementations)

Aside: Patterns from functional programming (FP)

● Advantages to this style of programming
○ Easier to test

■ Effects like IO can be done in-memory with test-only implementations of the traits
○ Easier to reason about

■ Effects are explicit in the type signature, no need to check to implementation details
○ Easier to re-use

■ Abstract code can be applied to more situations (like both smart contracts and indexers)

Case example: Aurora Engine

● Aurora is an Ethereum scaling solution built on the Near blockchain platform
○ https://aurora.dev/
○ https://near.org/

● Core product is an EVM deployed as a smart contract on Near
● Need an RPC compatible with Ethereum spec to integrate with Ethereum

tooling (e.g. Metamask)
● Possible implementations:

○ Convert Ethereum RPC calls to Near RPC calls (slow)
○ Use the same Aurora Engine code as an indexer

https://aurora.dev/
https://near.org/

Case example: Aurora Engine

● https://github.com/aurora-is-near/aurora-engine

https://github.com/aurora-is-near/aurora-engine

Case example: Aurora Engine

Case example: Aurora Engine

Case example: Aurora Engine

Enable state history

In-memory changes only

Underlying rocksdb handle

Case example: Aurora Engine

Case example: Aurora Engine

Case example: Aurora Engine

● Pattern applies to all effects, not just storage!
○ Environment variables
○ Calls to other on-chain contracts

Case example: Aurora Engine

Case example: Aurora Engine

● Advanced indexer functionality eth_estimateGas
○ Check how much gas an EVM transaction with take on Aurora by simulating the transaction

● https://github.com/aurora-is-near/borealis-engine-lib

Set up environment variables

Use state access in closure (elided)

https://github.com/aurora-is-near/borealis-engine-lib

Conclusion

● High level ideas:
○ Write business logic as pure code with abstract interfaces marking effectful boundaries
○ Re-use business logic in all applications which require it

● Rust specifics:
○ Use type generics with trait bounds
○ Use conditional compilation for different targets

● Near blockchain specifics:
○ Smart contracts and indexers share a codebase using Rust + Wasm tech stack

● Other possible applications:
○ Shared code between Web and Mobile versions of an application

Thank you!

● Michael Birch
○ Telegram: @birchmd
○ https://github.com/birchmd/
○ https://www.typedriven.ca/news/

● Aurora
○ https://aurora.dev/

● Near
○ https://near.org/

https://github.com/birchmd/
https://www.typedriven.ca/news/
https://aurora.dev/
https://near.org/

