Turning Smart Contracts into
Indexers with
Cross-Compilation in Rust

Conf42 Rustlang 2023
Michael Birch

Goals

e Show functional programming (FP) patterns in Rust

e Resulting code is:
o Easier to test, maintain
o Easier to re-use

e Case example:
o shared codebase for a smart contract and indexer

Outline

e Blockchain basics
o Jargon quick start
o Smart contracts
o Indexers
e Key Rust concepts
o Compilation targets
o Type generics
e (Case example: Aurora Engine

e Conclusion

Blockchain basics: Jargon quick start

e Blockchain: append-only data structure with tamper-proof history
e Individual data chunks called blocks

Blockchain basics: Jargon quick start

e Transaction: data element within a block
e Transactions are interpreted inside a VM to cause state transitions

Tx 1 Tx 5 Tx 9 Tx 13
Tx 2 g Tx 6 g Tx 10 g Tx 14
Tx 3 Tx 7 Tx 11 Tx 15
Tx 4 Tx 8 Tx 12 Tx 16

NOrRYOrYOr:

Blockchain basics: Smart contracts

e Smart contract: program for the VM of a blockchain platform
e Transactions may invoke a method of a smart contract

Tx 1: Tx 2:
Deploy [* (of:1]]
contract contract.foo()

o
contract
E fn foo()

State

[contract]

Blockchain basics (continued)

e Blockchain platform: a distributed blockchain continuously built by
decentralized participants (nodes) from user-submitted transactions
e Nodes eventually agree on the blockchain via a consensus algorithm

/7.

Blockchain basics (continued)

e Users interact with a blockchain platform via an RPC
o Either by running their own node or using a service provider

o ®

/7.

. . mEtherscan
Blockchain basics: Indexers

‘ Address 0xDd129c079fcA6d38B6538203e28555¢fd65E1b2A

e Indexer: off-chain program creating a Overview More Info
SpeC|a||Zed view Of the State ETH BALANCE PRIVATE NAME TAGS
_ . 4 0.338328370120757592 ETH P
o Addresses problem of some queries being
) ETH VALUE LAST TXN SENT
too slow via RPC $624.73 (@ $1,846.53/ETH) 0x20eb1a537eaef...

TOKEN HOLDINGS FIRST TXN SENT
$212.06 (26 Tokens) : Oxbfde4c2f43fd3...

e Example: block explorers index tokens [Tyt
for users ERC-20 Tokens (23) 3

(18 KOMPETE y $101.94
123 K ~0.0082

$53.73

€ Tether USD (USDT) $41.82
41.848842 USDT ©0.9994

Blockchain basics: Indexers

Indexers help create low-latency (web2-like) experiences for users

Application Ul

Indexer

RPC

ldea: Turning smart contracts into indexers

Same code both a smart contract and its own indexer

(@)

(@)

Lower maintenance
Uses beyond state query

Source code

4

(@

Smart contract

Indexer

Key Rust concepts: Compilation targets

e Rust allows compiling different kinds of output

o https://rust-lang.qithub.io/rustup/cross-compilation.html
o https://[doc.rust-lang.org/nightly/rustc/platform-support.html

$ rustup target add wasm32-unknown-unknown

$ cargo build --release --target wasm32-unknown-unknown

https://rust-lang.github.io/rustup/cross-compilation.html
https://doc.rust-lang.org/nightly/rustc/platform-support.html

Key Rust concepts: Compilation targets

e Conditional compilation can handle platform-specific logic
o https://doc.rust-lang.ora/reference/conditional-compilation.html

e Drawbacks: verbose, tedious with IDEs

fn foo() {
#[cfg(target_arch = "wasm32")]

foo_for_wasm();

#[cfg(not(target_arch = "wasm32"))]

foo_for_generic_arch();

https://doc.rust-lang.org/reference/conditional-compilation.html

Key Rust concepts: Type generics

e \Write code generic over an interface using type generics and trait bounds
trait I0 {
fn read(&self, key: &[u8]) -> Vec<u8>;
fn write(&mut self, key: &[u8], value: &[u8]);
}
fn get _balance<I: IO>(io: &I, user: User) -> ul28 {

ul28::from_be_bytes(&io.read(&user.id()))

Key Rust concepts: Type generics

e Include an implementation for the trait in both targets
e Reuse the generic code in both smart contract and indexer

// indexer/src/main.rs
struct IndexerIO { ... }
impl IO for IndexerIO { ... }

fn main() {
let io = IndexerIO::new();
let balance = get balance(&io, user);

// contract/src/lib.rs
struct WasmIO { ... }

impl IO for WasmIO { ... }
fn method_entry point() {

let io = WasmIO: :new();
let balance = get balance(&io, user);

Aside: Patterns from functional programming (FP)

e Pure code does not depend on the environment Light wrapper
o l.e. no target-specific effects (with trait

impl tati
e Factoring out target-specific effects as generics implementations)

makes code easier to test and maintain T

FP Core
(generic, pure)

Aside: Patterns from functional programming (FP)

e Advantages to this style of programming
o Easier to test
m Effects like IO can be done in-memory with test-only implementations of the traits
o Easier to reason about
m Effects are explicit in the type signature, no need to check to implementation details
o Easier to re-use
m Abstract code can be applied to more situations (like both smart contracts and indexers)

Case example: Aurora Engine

e Aurora is an Ethereum scaling solution built on the Near blockchain platform
o https://aurora.dev/
o https://near.org/

e Core product is an EVM deployed as a smart contract on Near
e Need an RPC compatible with Ethereum spec to integrate with Ethereum
tooling (e.g. Metamask)

e Possible implementations:

o Convert Ethereum RPC calls to Near RPC calls (slow)
o Use the same Aurora Engine code as an indexer

https://aurora.dev/
https://near.org/

Case example: Aurora Engine

e https://qithub.com/aurora-is-near/aurora-engine

pub fn get_balance<I: I0>(io: &I, address: &Address) -> Wei {
let raw: U256 = io &I
.read _u256(key: &address_to_key(prefix: KeyPrefix::Balance, address))
.unwrap_or_else(op: |_| U256::zero());
Wei::new(amount: raw)

} pub fn set_balance<I: IO>(io: &mut I, address: &Address, balance: &ei) {

io.write_storage(
key: &address_to_key(prefix: KeyPrefix::Balance, address),

pub fn add_balance<I: TI0>(

io: &mut I, value: &balance.to_bytes(),
address: &Address,) =
amount: Wei, }

) -> Result<(), BalanceOverflow> {

let current_balance: Wei = get balance(io, address);

let new_balance: Wei = current_balance.checked_add(amount).ok_or(err: BalanceOverflow)?;
set_balance(io, address, &new_balance);

0k{(())

https://github.com/aurora-is-near/aurora-engine

Case example: Aurora Engine

#[derive(Copy, Clone, Default)]
pub struct Runtime;

impl crate::io::I0 for Runtime {
type StorageValue = RegisterIndex;

fn read_storage(&self, key: & u8]) -> Option<Self::StorageValue> {
unsafe {

if exports::storage read(
key.len() as u64,
key.as ptr() as u64,

Self::READ_STORAGE_REGISTER_ID.®,

Y == 1
{
Some(Self::READ_STORAGE_REGISTER_ID)
} else {
None
}

[
—

Case example: Aurora Engine

#[derive(Copy, Clone, Default)]
pub struct Runtime;

impl crate::i0::I0 for Runtime {
type StorageValue = RegisterIndex;
fn write_storage(&mut self, key: & u8], value: &[u8]) -> Option<Self::StorageValue> {
unsafe {
if exports::storage write(
key.len() as ué4,
key.as ptr() as u64,
value.len() as u64,
value.as_ptr() as ub4,
Self::WRITE_REGISTER _ID.O,

) =1
{
Some(Self::WRITE_REGISTER _ID)
} else {
None
}

—

Case example: Aurora Engine

#[derive(Copy, Clone)]
4 implementations
pub struct EngineStateAccess<'db, 'input, ‘output> {

input: &'input [u8],
bound_block_height: ué4,
bound_tx_position: uls,
transaction_diff: &'output RefCell<Diff>,
output: &'output Cell<Vec<u8>>,

db: &'db DB,

} \
Underlying rocksdb handle

—> Enable state history

——> In-memory changes only

Case example: Aurora Engine

impl<'db, ‘input: 'db, 'output: 'db> IO for EngineStateAccess<'db, 'input, 'output> {
type StorageValue = EngineStorageValue<'db>;

fn read_storage(&self, key: &[u8]) -> Option<Self::StorageValue> {

if let Some(diff) = self.transaction_diff.borrow().get(key) {
return diff
.value()

.map(|bytes| EngineStorageValue::Vec(bytes.to_vec()));

let opt = self.construct_engine_read(key);
let mut iter = self.db.iterator_opt(mode: rocksdb::IteratorMode::End, readopts: opt);
let value = iter.next().and_then(|maybe_elem| {
maybe_el? I
.ok()
.map(|(_, value)| DiffValue::try_from_bytes(&value).unwrap())

1)

value.take_value().map(EngineStorageValue::Vec)

Case example: Aurora Engine

impl<'db, ‘input: 'db, 'output: 'db> IO for EngineStateAccess<'db, 'input, 'output> {
type StorageValue = EngineStorageValue<'db>;

fn write_storage(&mut self, key: &[u8], value: &[u8]) -> Option<Self::StorageValue> {
let original_value = self.read_storage(key);

self.transaction_diff
.borrow_mut()
.modify(key: key.to_vec(), value: value.to_vec());

original_value

Case example: Aurora Engine

e Pattern applies to all effects, not just storage!

o Environment variables
o Calls to other on-chain contracts

pub trait Env {

/// Account ID that signed the transaction. pub trait PromiseHandler {

fn signer_account_id(&self) -> AccountId; fn promise_results_count(&self) -> u64;
/// Account ID of the currently executing contract.
fn current_account_id(&self) -> AccountId;

/// Account ID which called the current contract.
fn predecessor_account_id(&self) -> AccountId;

fn promise_result(&self, index: u64) -> Option<PromiseResult>;

unsafe fn promise_create_call(&mut self, args: &PromiseCreateArgs) -> Promiseld;

/// Height of the current block. unsafe fn promise_attach_callback(
fn block_height(&self) -> u64; &mut self,
/// Timestamp (in ns) of the current block. base: Promiseld,

callback: &PromiseCreateArgs,

fn block_timestamp(&self) -> Timestamp;
) -> PromiseId;

/// Amount of NEAR attached to current call
fn attached_deposit(&self) -> ul2s;
/// Random seed generated for the current block

fn random_seed(&self) -> H256; fn promise_return(&mut self, promise: PromiseId);
/// Prepaid NEAR Gas }

unsafe fn promise_create_batch(&mut self, args: &PromiseBatchAction) -> Promiseld;

fn prepaid_gas(&self) -> NearGas;

Case example: Aurora Engine

pub fn submit<I: IO + Copy, E: Env, P: PromiseHandler>(
10: I,
env: &E,
args: &SubmitArgs,
state: EngineState,
current_account_id: AccountId,
relayer_address: Address,
handler: &mut P,

) -> EngineResult<SubmitResult> {

> submit_with_alt_modexp::<_, _, _, AuroraModExp>(

Case example: Aurora Engine

e Advanced indexer functionality eth _estimateGas
o Check how much gas an EVM transaction with take on Aurora by simulating the transaction

e https://qithub.com/aurora-is-near/borealis-engine-lib

pub fn estimate gas(
storage: &Storage,
request: EthCallRequest,

earliest block height: u64, Set up environment variables
) -> (Result<SubmitResult, StateOrEngineError>, NonceStatus) {--

let env: Fixed = aurora_engine_sdk::env::Fixed {
signer_account_id: default_account_id.clone(),
current_account_id,

predecessor_account_id: default_account_id,

Bloek heishe Use state access in closure (elided)
block_timestamp: block_metadata.timestamp,

attached_deposit: 1,

random_seed: block metadata.random_seed,

prepaid_gas: aurora_engine_types::types::NearGas::new(gas: 360),

: o

storage &Storage

.with_engine_access(block_height: block_height + 1, transaction_position: 8, input: &[], f:[|io: EngineStateAccess<’ ,

Ll (e
.result

https://github.com/aurora-is-near/borealis-engine-lib

Conclusion

e High level ideas:
o Write business logic as pure code with abstract interfaces marking effectful boundaries
o Re-use business logic in all applications which require it
e Rust specifics:
o Use type generics with trait bounds
o Use conditional compilation for different targets
e Near blockchain specifics:
o Smart contracts and indexers share a codebase using Rust + Wasm tech stack
e Other possible applications:
o Shared code between Web and Mobile versions of an application

Thank you!

e Michael Birch

o Telegram: @birchmd
o https://qgithub.com/birchmd/
o https://www.typedriven.ca/news/

e Aurora
o https://aurora.dev/

e Near
o https://near.org/

https://github.com/birchmd/
https://www.typedriven.ca/news/
https://aurora.dev/
https://near.org/

