
Rust applications on Deta.Space & Shuttle.rs
Shuttle.rs and Deta.Space are platforms for
development and deployment of cloud applications.
They both support . Let's look at which one you may want.

Alternative access to this content

You can see the slides online at (also with a
dark theme).
If you clone them or download them

and follow a few steps in its README.md, you can also render the slides locally and
offline. Along with a PDF.
Of course, your comments or pull requests are welcome.

www.shuttle.rs deta.space/docs/en

Rust

peter-kehl.github.io/deta.space_shuttle.rs

github.com/peter-kehl/deta.space_shuttle.rs
https://github.com/peter-kehl/deta.space_shuttle.rs/archive/refs/heads/main.zip

https://www.shuttle.rs/
https://deta.space/docs/en
https://www.rust-lang.org/
https://peter-kehl.github.io/deta.space_shuttle.rs/
https://github.com/peter-kehl/deta.space_shuttle.rs
https://github.com/peter-kehl/deta.space_shuttle.rs/archive/refs/heads/main.zip

Disclaimers (part 1/2)
This is not a complete introduction to either platform. Their existing documentation is
already awesome.
Both are agile/work in progress. Especially, functionality can be ahead of the
documentation. Join and shape it!
Not fully comparable. They share or differ in some features, but other features or
limitations are unique to one or the other.
Updated in mid August 2023.

Disclaimers (part 2/2)
Most features and limits considered here are not Rust-specific. However, they affect
which platform to choose based on/for

an existing application or system design, or
a new system design, or
integration with non-Rust components, or
portable or platform-specific API's/database/storage, or
sharing of applications
developer base & instance owner base
data isolation, or
limits/quotas and affected use cases, or
options for cloud providers, or private cloud, or
an (optional) commercial use.

Overview
Brief comparison of Deta.Space and Shuttle.rs at code level. For more details see:

Shuttle.rs:
 & its using Axum

 and its using Actix-web
Deta.Space:

 & its using Axum
 & its using Warp (which is based on

Hyper)
Features and Quantitative differences between them.
Let's see which platform may suit you.

Spoiler Alert
I love each. So exciting.

sys-info.shuttleapp.rs source
http-headers.shuttleapp.rs source

sysinfo-1-s4498989.deta.app source
tmpwdav-1-q0047082.deta.app source

https://sys-info.shuttleapp.rs/
https://github.com/peter-kehl/sys-info.shuttleapp.rs
https://http-headers.shuttleapp.rs/
https://github.com/peter-kehl/http-headers.shuttleapp.rs
https://sysinfo-1-s4498989.deta.app/ls
https://github.com/peter-kehl/sysinfo-1-s4498989.deta.app
https://tmpwdav-1-q0047082.deta.app/
https://github.com/scale-rs/tmpwdav-1-q0047082.deta.app

Deta.Space: Spacefile with defaults (GLIBC)

Deta.Space: Spacefile with MUSL target

Deta.Space: Cargo.toml

Deta.Space: Getting the port number

Shuttle.rs: Cargo.toml for Axum

Shuttle.rs: Custom crates for Axum

Shuttle.rs: Cargo.toml for Actix-web

Shuttle.rs: Custom crates for Actix-web

Shared Features
local development on Linux, Mac OS & Windows
easy deployment on the respective platform's cloud, in a Docker-like Linux container
no way to run su/sudo (or not documented), nor to customize at Docker level (for
example: to access remote storage by mounting FUSE file systems)
No rate-limiting logic or other IP-dependant logic can be performed by the app itself.
That is [documented for Deta.Space)
().
That's also (even though not documented).
Why? We can't access the client IP (unless you , or any DNS/reverse
proxy that injects the client IP in a custom HTTP header).
support & community on their Discord servers

https://deta.space/docs/en/build/reference/runtime#important-notes-for-micros
the reality for Shuttle.rs

use Cloudflare DNS

https://deta.space/docs/en/build/reference/runtime#important-notes-for-micros
https://http-headers.shuttleapp.rs/
https://deta.space/docs/en/build/guides/accessing-client-ip-address

Deta.Space Features (part 1/4)
the deployed application can be private (for the developer only), or public
("published")
Even if the application is public, the developer can deploy an unpublished (test) version
of that public application. Such a version is visible only to her/him.
a public (published) application can still have parts which are private
to access a private application, or private URLs of a public application, the application
owner is authenticated by Deta.Space. (Deta authenticates the user through AWS, but it

.)
mesh design

Mesh of computes: An application can consist of up to five (computes).
Each can be developed in any of the supported languages.
Suitable if we want to add access control on top of/in front of an existing/3rd party
codebase (installed as a part of your application). We can create a "proxy" that
performs access control. It then forwards the request to the other (existing/3rd
party) application instance, deployed in another micro. (Such a micro would not be
public.) We can proxy for example with .

doesn't have access to her/his password

"micros"

warp_reverse_proxy

https://deta.space/privacy
https://deta.space/docs/en/build/fundamentals/the-space-runtime/micros
https://docs.rs/warp-reverse-proxy

Deta.Space Features (part 2/4)
mesh design (continued)

Mesh of languages/frameworks: Each micro within the same application can use
any of the supported languages/frameworks.

Rust applications don't get special handling. Instead, Rust micros have the "custom"
type.

 are only unofficial.
No special Rust crates/macros or code, other than getting the basic configuration. That
can make the code a little bit more portable/flexible. But then you couldn't store data
with Deta.Base/Deta.Store (see below).

no restrictions on Rust version, nor on crate versions
Rust support is new. There are only a few examples of Rust applications so far. But they
are growing!
If you get GLIBC issues with Rust on Deta.Space deployment, use instead.

 (specifically: not for Discord
bots)

Rust bindings for Deta API

not with PostgreSQL/MySQL... unless you use a pool manager

MUSL target
not for: background/long tasks, Discord bots, Websockets

https://github.com/jnsougata/deta-rust-sdk
https://deta.space/docs/en/build/reference/runtime#important-notes-for-micros
https://github.com/peter-kehl/sysinfo-1-s4498989.deta.app/blob/main/Spacefile-musl
https://deta.space/docs/en/build/reference/runtime#important-notes-for-micros

Deta.Space Features (part 3/4)
database & storage provided by the platform is only through their own NoSQL
(Deta.Base) and their own storage (Deta.Store) API. If you use those, the source code is
not portable. (Unless you create traits or wrappers. Such abstractions are a part of good
design. But they add complexity when creating them, and even more so when
maintaining.)
data isolation: if using Deta.Base or Deta.Store, this data is separate per instance owner
- even if you clone someone else's published Deta application
data provisioning: automatic
/tmp (and seemingly)
CRON-like
subdomain anonymization promotes/suggests using each instance only by its owner. If
the application is for public, the users can "fork" their own instances.

/dev/shm, too
scheduled actions

https://sysinfo-1-s4498989.deta.app/ls
https://deta.space/docs/en/build/fundamentals/the-space-runtime/actions

Deta.Space Features (part 4/4)
Instance owners don't need developer skills. In other words, it's easy to have your
own/separate deployment (an isolated clone) of an application that someone else
published on Deta.Space.
App Marketplace & commercial model: App Marketplace promotes sharing free
applications. Deta.Space is also planning an option of applications to be paid so they
would generate revenue for the developer.

Shuttle.rs Features (part 1/3)
Specializing only in Rust. In addition to hosting, storage and deployment, Shuttle
integrates with . It also provides tutorials on how to
connect the , and various aspects of and .
Suitable for background/long tasks (for example: for Discord bots). See "No cold-start
and can even have long-running threads" in > "How does this differ from using
serverless framework with Rust Lambda and provided runtime?" Also suitable for

.
richer storage

wider variety
both public/free standards (portable) and proprietary (not portable)
RDS (SQL) and handling of migrations/updates

Postgres (either a , or a)
MySQL (a)
MariaDB (a)

 (fork,
). This is currently NOT hosted by Shuttle.rs, but it may be so in the

future. Either way, it has a .

multiple Rust web frameworks
middleware security cryptography

FAQ

Websockets

shared server dedicated instance
dedicated instance

dedicated instance
Turso distributed SQLite SQLite-compatible & with 1st class Rust
support

dedicated crate from Shuttle

https://docs.shuttle.rs/examples/other
https://docs.shuttle.rs/tutorials/rest-http-service-with-axum#middleware
https://docs.shuttle.rs/tutorials/rest-http-service-with-axum#cors
https://docs.shuttle.rs/tutorials/authentication#cookies-and-session-tokens
https://docs.shuttle.rs/support/faq
https://docs.shuttle.rs/tutorials/websocket-chat-app-js
https://docs.shuttle.rs/resources/shuttle-shared-db
https://docs.shuttle.rs/resources/shuttle-aws-rds
https://docs.shuttle.rs/resources/shuttle-aws-rds
https://docs.shuttle.rs/resources/shuttle-aws-rds
https://docs.shuttle.rs/resources/shuttle-turso
https://turso.tech/
https://turso.tech/pricing
https://docs.shuttle.rs/resources/shuttle-turso

Shuttle.rs Features (part 2/3)
richer storage (continued)

noSQL:
key/value: proprietary

data isolation
A fixed Rust version (currently 1.70). See > "Which version of Rust...". Similarly,

.

MongoDB through a shared database
Shuttle Persist

FAQ
Turso is pinned to version 0.30.1

https://docs.shuttle.rs/resources/shuttle-shared-db
https://docs.shuttle.rs/resources/shuttle-persist
https://docs.shuttle.rs/support/faq
https://docs.shuttle.rs/resources/shuttle-turso

Shuttle.rs Features (part 3/3)
Longer build times: Custom crates and attribute (procedural) macros make the (initial)
local build times much longer (than with Deta.Space). Depending on which of the
supported Rust framework you choose, your project has initial 300-600 dependencies
(in total, most of them being indirect dependencies). It's unclear if Shuttle.rs
deployments use (or could use) incremental builds.

; only /dev/shm
Not promoting/targeting sharing (clones) of applications. Of course, developers are
free to publish their code (on GIT or similar) so that others could deploy it on Shuttle.rs,
too.
Instance owners need developer skills, such as running cargo shuttle In
other words, if you want your own/separate deployment of an application that
someone else published (on GIT...), it's more work than on Deta.Space.
Commercial model: For users with more than 5? applications. But, the limits are not
enforced yet. And, if you , it's free for life!
use your

no /tmp

become a Shuttle.rs hero
own AWS account

https://sys-info.shuttleapp.rs/
https://www.shuttle.rs/shuttle-heroes
https://www.shuttle.rs/beta

Quantitative & other differences (part 1/2)

Property/Limit Shuttle.rs Deta.Space

application/compute
size

unspecified per each of
up to 5 micros

execution timeout unspecified

RAM per execution unclear

RAM per container (4GB during high contention:
very rare, see > "What happens
when I create a project?")

unclear

/dev/shm and/or
/tmp

unspecified (64MB on /dev/shm,
but)

 shared
between

250MB

20s

250MB

6GB
FAQ

no /tmp
512MB

/dev/shm
and /tmp

https://deta.space/docs/en/build/quick-starts/custom
https://deta.space/docs/en/build/reference/runtime#technical-specifications-for-micros
https://deta.space/docs/en/build/reference/runtime#technical-specifications-for-micros
https://docs.shuttle.rs/introduction/how-shuttle-works
https://docs.shuttle.rs/support/faq
https://sys-info.shuttleapp.rs/
https://deta.space/docs/en/build/reference/runtime#technical-specifications-for-micros
https://sysinfo-1-s4498989.deta.app/ls

Quantitative & other differences (part 2/2)

Property/Limit Shuttle.rs Deta.Space

processes/threads

HTTP payload unspecified

database and/or
object storage

, but not
enforced yet. (Plus, free for life if
you become a hero.)

unspecified (but
personal use is free for
life)

clouds/regions AWS and more planned.
(See > Do we plan to support
multiple regions?)

 and potentially
planning for

4 threads (per project) 1024 (per micro)

5.5MB

10GB on free tier

eu-west
FAQ

AWS
GCP and

other clouds

https://docs.shuttle.rs/introduction/how-shuttle-works
https://deta.space/docs/en/build/reference/runtime#technical-specifications-for-micros
https://deta.space/docs/en/build/reference/runtime#technical-specifications-for-micros
https://docs.shuttle.rs/introduction/how-shuttle-works#project-limitations
https://github.com/shuttle-hq/shuttle-docs/issues/162
https://docs.shuttle.rs/support/faq
https://deta.space/privacy
https://jobs.deta.space/?ashby_jid=739b845d-17ff-475c-b05f-649801e919ad

Choosing between them (part 1/6)

Feature Deta.Space Shuttle.rs

no stars to *** no stars to

/tmp *** (and /dev/shm, too) /dev/shm
only

max. processes/threads 4 (per app) 1024 (per
micro)

max. HTTP payload max. 5.5MB

max. RAM (unclear) 250MB 4GB (usually
6GB)

option to use your own AWS
account

private apps (authenticated
through the platform)

*** (one user only: the app
instance owner)

Choosing between them (part 2/6)

Feature Deta.Space Shuttle.rs

private parts of public
apps (authenticated
through the platform)

*** (one user
only: the app
instance owner)

single user (owner)
authentication

*** (see multi user below)

multi user authentication not provided, but they have a
 on how you can

implement/integrate it
detailed tutorial

https://docs.shuttle.rs/tutorials/authentication

Choosing between them (part 3/6)

Feature Deta.Space Shuttle.rs

mesh of
computes

*** (up to 5
computes per
app)

(No specific support. You'd need to integrate them
into one Rust application. If those parts use different
web frameworks and can't be migrated into one
framework, you'd need to run those respective
frameworks at different ports and proxy/forward to
them.)

Choosing between them (part 4/6)

Feature Deta.Space Shuttle.rs

mesh of
languages/frameworks

1st class support
for/primarily
for/dedicated to Rust

* (not yet; but Deta
is considering
moving the internal
tooling from
Golang to Rust)

*** Rust only; custom crates and
macros for config
automation/integration; even the
tooling is in Rust:

background/long
tasks/Discord bots

(specifically: no) ***

CRON-like scheduled
actions

*** (granularity
down to one
minute)

cargo
shuttle

https://github.com/shuttle-hq/shuttle

Choosing between them (part 5/6)

Feature Deta.Space Shuttle.rs

Stability + Egonomics: Official Rust
SDK/bindings

unofficial only ***

Portability > no need for special
crates/macros

Portability > no restrictions on Rust
version or channel, or crate versions

Storage > PostgreSQL/MySQL/MariaDB (no specific support;
you need a connection
pool)

(supported &
hosted)

Storage > SQLite/Turso * officially read-only
SQLite only; but Turso is
likely to work

*** Turso

Choosing between them (part 6/6)

Feature Deta.Space Shuttle.rs

Storage > MongoDB ***
Storage > Proprietary NoSQL ***
Storage > Proprietary key-value *** ***
Free plan: Any (legal) use *** *** (with 10GB

storage)

Commercial plan: Over the quotas *** planned

Free model: Marketplace of (personal isolated
clones of) applications

Commercial model: Marketplace of paid (personal
isolated clones of) applications

planned

Summary
Choose based on your needs for storage, memory, parallelization, non-Rust/multiple
Rust componenet integration, and application owner/user base models.
Thank you to both. Loving them.
Let's get on cloud, Rustaceans!

