
Floating Point Challenges and
Overcoming them in Rust Lang
Understanding and Mitigating Inaccuracies in Real-World
Calculations

About me

Hobbies and Interest

● Love Linux 🐧🐧
● Systems programming
● Music / DJ 🎹
● Cycling 󰣘

Experience

● Multiple programming jobs during college
● Contributed to different open source

project’s in rust
● Interned as Rust developer for AfterShoot,

one of the most thriving startup’s in
domain of photography

LinkedIn: prabhat25
Github: artech-git

1. Introduction

2. Limited Precision

3. Rounding Errors

4. Loss of Significance

5. Associativity and Order of Operations

6. Comparisons and Equality Testing

7. NaN and Infinity

8. Compiler Optimizations

9. Accumulative Errors

10. Strategies for Overcoming Limitations

11. Strategies for Overcoming Limitations (Contd.)

Content

Importance of floating point calculations

Introduction

The Patriot Missile Failure, which occurred during the Gulf War in
1991, was attributed to various factors, including a
floating-point-related calculation error.

 Time Accumulation Error: The Patriot missile system tracked
incoming Scud missiles using time measurements. A
floating-point representation was used to represent time in
tenths of a second. However, this representation led to a
gradual accumulation of rounding errors over time due to
limited precision.

Target
Rounding Error Propagation: The Patriot's tracking radar
system relied on a time calculation to predict the position of
the incoming Scud missile. The rounding errors in this time
calculation were used to determine the missile's position, and
these errors propagated over time, causing the predicted
position to deviate from the actual position.

Preliminaries before proceeding

● Real-World Representation: Floating-point numbers provide a way to approximate and represent real
numbers in computers.

● Scientific Notation: They use scientific notation, expressing a number as a sign, significand (mantissa),
and exponent.

● Precision and Range: Floating-point offers a trade-off between precision and range, suitable for a
wide spectrum of numerical values.

● Limited Precision: Due to finite bits, they exhibit rounding errors and minor inaccuracies in
calculations.

● Versatile Usage: Vital in scientific, engineering, and financial computations, enabling accurate
modeling of real-world phenomena.

● Mitigation Strategies: Developers apply strategies to manage rounding errors and ensure reliable
results.

Introduction

Introduction

The IEEE 754 standard is a widely used specification for representing and performing
arithmetic operations on floating-point numbers in computers. It defines how real
numbers, including both integers and fractions, can be represented using a finite number
of bits in binary format. The standard was first published by the Institute of Electrical
and Electronics Engineers (IEEE) in 1985 and has since been revised and updated.

The IEEE 754 standard defines several formats for representing floating-point numbers,
including single precision (32-bit), double precision (64-bit), and extended precision
(80-bit or higher).

Precision

Single Precision (32-bit): In the IEEE 754 single precision format, a floating-point number is represented using
32 bits, which are divided into three components:

 Sign bit (1 bit): Represents the sign of the number. 0 for positive, 1 for negative.
 Exponent bits (8 bits): Represent the exponent of the number in a biased form. This allows the

representation of both very small and very large numbers.
 Significand bits (23 bits): Also known as the fraction or mantissa, these bits represent the fractional part

of the number.

The value of a single precision floating-point number is calculated as follows:

(-1)^S * 2^(E - Bias) * 1.F

Where:

● S is the sign bit.
● E is the exponent value decoded from the exponent bits.
● Bias is a constant (127 for single precision) used to encode the exponent in a biased form.
● F is the fractional value represented by the significand bits as a binary fraction.

Precision

Double Precision (64-bit): In the IEEE 754 double precision format, a floating-point number is
represented using 64 bits, with the following components:

 Sign bit (1 bit): As in single precision.
 Exponent bits (11 bits): Represent the exponent of the number with a larger range.
 Significand bits (52 bits): Represent the fractional part.

The value of a double precision floating-point number is calculated in a similar way to single
precision, but with a larger exponent range and more significand bits.

How Floating Point numerical works

Single Precision (32 bit)

1. Introduction

Limited Precision and Rounding Errors

● Floating-point numbers, a cornerstone of scientific and engineering computations,
are represented using a finite number of bits.

● Standardized by IEEE 754, floating-point representation includes both the
significand and exponent to capture a wide range of values.

● However, due to the finite number of bits available for representation, real numbers
often cannot be represented exactly.

● This inherent limitation leads to rounding errors, where the closest representable
value is used, resulting in slight inaccuracies.

Addressing Limited Precision
● Developers need to be aware of limited precision when designing algorithms and

systems that involve floating-point computations.
● Employ techniques to mitigate rounding errors and manage precision loss.
● Numerical libraries, proper algorithm design, and careful consideration of tolerance

thresholds are essential to achieve accurate results.

2. Limited Precision

● Limited Precision and Rounding Errors
● Floating-point numbers have finite precision due to the fixed

number of bits used for representation in the significand or
mantissa .

● Rounding errors occur when real numbers cannot be
represented exactly.

1 0 0 1 0 1 0 1 1 0 0 1 1 1 0 1

2. Limited Precision

Problem

2. Limited Precision

Solution

● Use Fixed-Point Arithmetic:
● Represent numbers as scaled integers to avoid precision issues.
● Perform arithmetic operations on scaled integers to maintain precision.

● BigDecimal Library:
● Utilize the num-bigint or rust-dec crate for arbitrary precision decimal

arithmetic.
● Use F64/F32 Wisely:

● Choose the appropriate floating-point type (f64 or f32) based on required
precision.

● Be aware of limitations and precision trade-offs for each type.

3: Rounding Errors

● Rounding Errors and Precision Loss occurs since not all real numbers can be exactly
represented in a limited precision floating-point format.

● Rounding errors can accumulate as a result of approximations made during arithmetic
operations.

● Errors can lead to small discrepancies between the expected mathematical result
and the actual result obtained when using floating-point arithmetic.

3: Rounding Errors

Problem

3: Rounding Errors

● Use Decimal Types:
● Utilize libraries like rust_decimal to work with decimal-based arithmetic, which can

minimize rounding errors.
● Round Only When Necessary:

● Avoid unnecessary rounding during intermediate calculations.
● Perform rounding only when presenting results to users or external systems.

● Avoid Cumulative Rounding:
● Minimize the number of rounding operations in a sequence to prevent cumulative errors.

● Avoid Divisions:
● Divisions can amplify rounding errors; try to use multiplication or other operations when

possible to achieve the end result.
● Interval Arithmetic:

● Use interval arithmetic libraries to represent ranges of possible values instead of relying
solely on point estimates.

Solution

4: Loss of Significance

Loss of Significance in Subtraction

● Subtraction of nearly equal numbers can lead to loss of
significant digits.

● Catastrophic cancellation can occur.

Loss of significance is a consequence of the limited
precision of floating-point representations, where the
available bits are allocated to the most significant digits

4: Loss of Significance

Problem

4: Loss of Significance

● Use Taylor Series Expansion:
● Approximate functions using Taylor series expansion to maintain precision in

calculations.
● Arbitrary-Precision Arithmetic:

● Use crates like num-bigint or rust-gmp for arbitrary-precision arithmetic when utmost
precision is required.

● Reorder Operations:
● Rearrange mathematical operations to minimize the loss of significant digits during

calculations.
● Use Alternative Formulas:

● Utilize algebraic manipulations to rewrite formulas and reduce subtractive cancellations.

Solution

5: Associativity and Order of Operations

Associativity and Order of Operations

● Floating-point operations are not
always associative.

● Changing order can lead to
different results.

5: Associativity and Order of Operations

● Parentheses and Explicit Grouping:
● Use parentheses to explicitly group operations and control the

order of evaluation to ensure correct results.
● Reorder Operations:

● Rearrange operations to minimize intermediate rounding and error
accumulation. Consider commutative operations that are less
sensitive to order.

● Use Fused Multiply-Add (FMA) Operations:
● FMA operations can improve accuracy by performing multiplication

and addition in a single step, reducing rounding errors.

6: Comparisons and Equality Testing

Comparisons and Approximate Equality

● Direct equality comparisons for
floating-point numbers can be
problematic.

● Use epsilon-based comparisons for
approximate equality.

6: Comparisons and Equality Testing

● Using Epsilon Comparison:
● Instead of checking for exact equality (a == b), use an epsilon value to allow

for a small difference between two numbers.
● Example: if (a - b).abs() < epsilon

● Relative Error Comparison:
● Compare the relative error (difference divided by one of the numbers) against

a threshold.
● Example: if (a - b).abs() / a < threshold

● ULP (Units in the Last Place) Comparison:
● Compare the difference between two numbers in terms of their ULPs to

account for precision.
● Example: Use the f64::ulps_eq function from the float_cmp crate.

● Comparing with Specific Tolerance:
● Define a tolerance value based on your application's requirements and

compare within that range.
● Example: if (a - b).abs() < tolerance

7. NaN and Infinity Handling

NaN and Infinity Handling

● Floating-point types include special
values: NaN (Not-a-Number) and
infinity.

● Arise from operations like division by
zero or square root of negative
number.

 8. Compiler Optimizations

Compiler Optimizations and Precision

● Compilers optimize floating-point
calculations for performance.

● May reorder or combine operations,
affecting precision.

● Use stable compiler flags to control
optimizations.

 8. Compiler Optimizations

Use compiler attributes:

Rust provides attributes that allow you to control the
behavior of floating-point operations. One such
attribute is #[target_feature], which allows you to
enable specific CPU features and optimizations,
including some that might be related to "fast-math"
behavior. For example:

Use compiler flags:

You can use Cargo's feature flags to enable specific
optimization options provided by the LLVM
compiler backend. For example, you can set the
RUSTFLAGS environment variable to include
optimization flags:

9: Accumulative Errors

Accumulative Errors in Iterations

● Iterative algorithms can accumulate
rounding errors.

● Strategies to minimize error accumulation:
● Kahan summation.
● Compensated summation.

10. Strategies for Overcoming Limitations (Part 1)

Mitigation Strategies

● Choose appropriate data types (f32, f64) for precision requirements.

● Leverage numerical computation libraries for enhanced accuracy.
a. rug
b. num-bigint-dig
c. Inari
d. FastFp
e. float_cmp
f. rust_decimal

● Avoid direct equality comparisons, use epsilon-based comparisons.

● Perform error propagation analysis to estimate potential
inaccuracies.

11: Strategies for Overcoming Limitations (Part 2)

More Mitigation Strategies

● Consider using arbitrary precision libraries for critical computations.

● Minimize accumulated errors in iterative algorithms using techniques like
Kahan summation.

● Utilize stable compiler flags to control floating-point behavior.

● Thoroughly test numerical code with diverse inputs to identify and address
inaccuracies.

