
AKA Event Driven Design

Daniel Selans // daniel@batch.sh

● Everything I talk about, I have done in production
○ .. and if I haven’t, I’ll tell you

● No fluff
○ Some stuff is hard, some stuff is easy - will keep it real!

● My personal goal
○ You have leveled up

Disclaimer

Obligatory `whoami`

● Reside in Portland, OR
● Working in backend for 10+ years
● Love building and operating distributed systems
● Previously

○ R&D @ data centers
○ SRE @ New Relic
○ SE @ InVisionApp
○ SE @ DigitalOcean
○ SE @ Community

● And most recently - co-founder/CTO at Batch.sh
○ Observability platform for high throughput data
○ Got into YCombinator (S20) - woohoo! 🎉

Obligatory `whoami`

● Reside in Portland, OR
● Working in backend for 10+ years
● Love building and operating distributed systems
● Previously

○ R&D @ data centers
○ SRE @ New Relic
○ SE @ InVisionApp
○ SE @ DigitalOcean
○ SE @ Community

● And most recently - co-founder/CTO at Batch.sh
○ Observability platform for high throughput data
○ Got into YCombinator (S20) - woohoo! 🎉 Oh, and I’m from !

What is “Reliability Nirvana”?

“Reliability Nirvana” is...

● Not being woken up at 3AM on a Saturday night

● Not being woken up at 3AM on a Saturday night

● Predictable service failure scenarios

“Reliability Nirvana” is...

“Reliability Nirvana” is...

● Not being woken up at 3AM on a Saturday night

● Predictable service failure scenarios

● Well-defined service boundaries

“Reliability Nirvana” is...

● Not being woken up at 3AM on a Saturday night

● Predictable service failure scenarios

● Well-defined service boundaries

● Security conscious

“Reliability Nirvana” is...

● Not being woken up at 3AM on a Saturday night

● Predictable service failure scenarios

● Well-defined service boundaries

● Security conscious

● Self-healing services

“Reliability Nirvana” is...

● Not being woken up at 3AM on a Saturday night

● Predictable service failure scenarios

● Well-defined service boundaries

● Security conscious

● Self-healing

● Highly scalable and highly reliable

“But we already have $insert_tech...”

“But we already have $insert_tech...”
● Microservices pattern

○ Tackles the monolith problem

“But we already have $insert_tech...”
● Microservices pattern

○ Tackles the monolith problem

● Containers (docker)
○ Tackles reproducible builds/releases, dev flow

“But we already have $insert_tech...”
● Microservices pattern

○ Tackles the monolith problem

● Containers (docker)
○ Tackles reproducible builds/releases, dev flow

● Container orchestration (kubernetes, mesos, rancher)
○ Tackles container lifecycle

“But we already have $insert_tech...”
● Microservices pattern

○ Tackles the monolith problem

● Containers (docker)
○ Tackles reproducible builds/releases, dev flow

● Container orchestration (kubernetes, mesos, rancher)
○ Tackles container lifecycle

● Service mesh (linkerd, istio, consul)
○ Tackle inter-service communication

“But we already have $insert_tech...”
● Microservices pattern

○ Tackles the monolith problem

● Containers (docker)
○ Tackles reproducible builds/releases, dev flow

● Container orchestration (kubernetes, mesos, rancher)
○ Tackles container lifecycle

● Service mesh (linkerd, istio, consul)
○ Tackle inter-service communication

● And probably several other quality of life improvements

Things sound pretty good. What’s the problem?

Achieving really high reliability is hard

● Lots of inter-dependent microservices == huge failure domain
○ 1 service being slow will result in unpredictable system state

● So.. use histrix-style circuit breakers!
○ .. turns out, it’s pretty hard to think of all possible failure scenarios

○ … and it’s easy to shoot yourself in the foot

● .. And avoid cascading failures!
○ “Well, service G knows how to deal with that situation and it won’t happen”

● .. And we need self-healing at service level!
○ Will mid-flight requests survive auto-scale events?

● .. And keep security in mind!
○ Because your PM loves it when you don’t ship features! 😅

I sense a pattern...

❖ Services do not have to rely on each other

❖ Services are able to easily recover from where they were at
when they failed or were restarted

❖ Developers do not have to implement complex, per-service

circuit breaker & fault-tolerance strategies

❖ SRE’s do not have to define per-service firewall rules

❖ Be able to go through every state change in a req/tx

❖ Expose all of your backend data for future analytics uses

Reliability Nirvana is ...

Effortless service reliability

Event Driven

Software (and systems)
architecture paradigm
promoting the: production,
detection, consumption of,
and reaction to events.

Core concepts for Event Driven

● At its core, event driven consists of three actions:

● Events MUST be the source of truth

○ A single service doesn’t know the state of the system - it only knows its OWN state

Core concepts for Event Driven

● At its core, event driven consists of three actions:

● Events MUST be the source of truth

○ A single service doesn’t know the state of the system - it only knows its OWN state

● All events are communicated through an event/message bus

Core concepts for Event Driven

● At its core, event driven consists of three actions:

● Events MUST be the source of truth

○ A single service doesn’t know the state of the system - it only knows its OWN state

● All events are communicated through an event/message bus

● All services MUST be idempotent

○ Your services are able to work with duplicate events

○ Your services are able to work with out-of-order events

Core concepts for Event Driven

● At its core, event driven consists of three actions:

● Events MUST be the source of truth

○ A single service doesn’t know the state of the system - it only knows its OWN state

● All events are communicated through an event/message bus

● All services MUST be idempotent

○ Your services are able to work with duplicate events

○ Your services are able to work with out-of-order events

● You MUST be OK with eventual consistency

○ You trust that the system will be eventually consistent but cannot guarantee consistency

Event Driven
Components

Event Driven Components

● You want RabbitMQ
○ #1 reason - versatile routing configuration
○ Medium-fast (~20k msgs/s)
○ Reliable, little to no babysitting

● Event bus
○ All events pass through here as protobuf

Event Driven Components

● You want RabbitMQ
○ #1 reason - versatile routing configuration
○ Medium-fast (~20k msgs/s)
○ Reliable, little to no babysitting

● Event bus
○ All events pass through here as protobuf

● Caching / config layer
○ As your service consumes events,

store the resulting state here. On
restarts, load the state into memory.

● You want etcd
○ Rock solid, high latency resilient
○ Medium-fast (20k+ msgs/s)
○ Reliable, little to no babysitting

Event Driven Components

● You want RabbitMQ
○ #1 reason - versatile routing configuration
○ Medium-fast (~20k msgs/s)
○ Reliable, little to no babysitting

● Long term event storage
○ All of the events that ever pass through the

message bus should be stored here. Forever.

● Event bus
○ All events pass through here as protobuf

● Caching / config layer
○ As your service consumes events,

store the resulting state here. On
restarts, load the state into memory.

● You want etcd
○ Rock solid, high latency resilient
○ Medium-fast (20k+ msgs/s)
○ Reliable, little to no babysitting

● You want S3
○ Cheap, fast, reliable

Event Driven Components

● You want RabbitMQ
○ #1 reason - versatile routing configuration
○ Medium-fast (~20k msgs/s)
○ Reliable, little to no babysitting

● Long term event storage
○ All of the events that ever pass through the

message bus should be stored here. Forever.

● Event archiver
○ A custom service you will build to

consume events from the message
bus to populate your long term store

● Event bus
○ All events pass through here as protobuf

● Caching / config layer
○ As your service consumes events,

store the resulting state here. On
restarts, load the state into memory.

● You want etcd
○ Rock solid, high latency resilient
○ Medium-fast (20k+ msgs/s)
○ Reliable, little to no babysitting

● You want S3
○ Cheap, fast, reliable

● You want Go
○ Easy to write performant code
○ Great libs

How does this translate to improved reliability?

● You do not have to think about service outages

○ The service will eventually read all of the messages it may have missed

How does this translate to improved reliability?

● You do not have to think about service outages

○ The service will eventually read all of the messages it may have missed

● You have a MUCH smaller failure domain

○ Services do not depend on each other - no cascading failures

○ Predictable failure mode

○ 1 service outage == 1 feature outage

How does this translate to improved reliability?

● You do not have to think about service outages

○ The service will eventually read all of the messages it may have missed

● You have a MUCH smaller failure domain

○ Services do not depend on each other - no cascading failures

○ Predictable failure mode

○ 1 service outage == 1 feature outage

● True service autonomy

○ Teams no longer have to “depend” on another service/team

How does this translate to improved reliability?

● You do not have to think about service outages

○ The service will eventually read all of the messages it may have missed

● You have a MUCH smaller failure domain

○ Services do not depend on each other - no cascading failures

○ Predictable failure mode

○ 1 service outage == 1 feature outage

● True service autonomy

○ Teams no longer have to “depend” on another service/team

● Well-defined development workflow (via protobuf schemas)

○ Protobuf schema clearly defines what message(s) you should send or receive

How does this translate to improved reliability?

● You do not have to think about service outages

○ The service will eventually read all of the messages it may have missed

● You have a MUCH smaller failure domain

○ Services do not depend on each other - no cascading failures

○ Predictable failure mode

○ 1 service outage == 1 feature outage

● True service autonomy

○ Teams no longer have to “depend” on another service/team

● Well-defined development workflow (via protobuf schemas)

○ Protobuf schema clearly defines what message(s) you should send or receive

● Dramatically lower attack surface!

○ Services no longer have to talk to each other

Event Driven Code Example
https://github.com/batchcorp/go-template

This sounds
complex...

Yep, it’s complicated.

● Requires excellent understanding of your message bus tech

● Requires everyone to be onboard
○ Create docs, flows, examples, etc.

● Accept that the event bus is your source of truth

● Embrace eventual consistency

● Embrace idempotency

● Anticipate complex debug

Implementation Reality: Technical

● Easy: Setup foundational infrastructure (<2 weeks)
○ Event bus, cache, event storage

● Medium: Defining schemas (<1 week)
○ Define message envelope, encoding type (protobuf? Avro? JSON schema?)

● Medium/Hard: Setting up schema publishing/consumption pipeline (~1 week)
○ Compile PB’s on update, publish latest pkg

● Medium/Hard: Provide example service that uses event driven (~2 weeks)

● Hard*: Build event archiving solution (~2-4 weeks)
○ How to group/batch events, maximize storage efficiency (and retain ease of use)?

● Hard*: Build a replay mechanism (3+ weeks)
○ How do you efficiently read from the event store?

● Hard*: Build event viewer/search (4+ weeks)
○ How do you search your event store?

* == Do you need it right away?

Implementation Reality: Tips

● Brand new org
○ The most freedom you will ever have - can create a beautiful foundation

○ But…

■ Only implement if you have the full picture

■ Only implement if you are confident in your engineering capability

■ Should have at least a few principal-level engineers with architecture experience

○ Do NOT use CDC (change data capture) as your source of truth (unless you have a very good reason)

● Existing org
○ Move to event driven gradually

○ Do NOT attempt a move in one fell swoop - it will fail!

■ Functionality will be missed

■ Engineering is not yet accustomed to operating an event driven arch in production

■ It will take 4x as long as you think it will take (and it still won’t be complete)

○ Do a “soft-intro” to event driven by utilizing CDC (change data capture)

■ Capture all INSERT/UPDATE/DELETE’s and expose them as events

Implementation Reality: Tips

● SRE/platform must ALWAYS be a part of the conversation for distributed system design
○ .. and should usually LEAD the conversation

● If you are not involved:
○ Involve yourself

○ You know best what is or isn’t possible on a platform level

● Most of this space is greenfield
○ You will have to develop tools

○ Very few tools will fit exactly what you’re trying to do

● You will have to wear an architecture hat .. whether you like hats or not

● Establish a written culture and get comfortable with writing documentation
○ An event driven system can feel like magic when it “just works”

○ .. but will be daunting to debug when things break - you will want docs and runbooks

In exchange for
complexity, you
gain:

● True service autonomy

● True team autonomy

● Can always rebuild state

● Predictable failure scenarios

● Improved outage recovery time

● Ability to sustain long-lasting outages

● Dramatically improved security

● A moldable, robust foundation

● Solid, well-defined architecture

● Lifetime historical records!

Batch.sh uses an event-driven architecture

● AWS EKS (managed k8s), AWS MSK (managed kafka), AWS EC2

● 19 (golang) microservices

● 100% event driven (except for the frontend <-> public API)

● 0 inter-service dependencies
○ Most services have 3 dependencies - rabbit, etcd and kafka

● No service mesh, no service discovery - not needed

● Instead of triggering behavior via curl or postman, we trigger behavior by

publishing an event on the bus (using plumber)

● Network is highly locked down
○ Inbound is limited to K8S compute node IP’s

○ Outbound is limited to rabbit, kafka and etcd

● Stats
○ Average event size @ 4KB

○ Total ~15M system events, ~100GB storage in S3 (since Dec 2020)

Bonus reading

Here’s some additional reading
material that you may find useful when
diving deeper into event driven.

● Martin Fowler’s “What do you mean ‘Event Driven’?”
○ https://martinfowler.com/articles/201701-event-driven.html

● Event sourcing
○ https://microservices.io/patterns/data/event-sourcing.html

● CQRS
○ https://martinfowler.com/bliki/CQRS.html

● Idempotent consumer
○ https://microservices.io/patterns/communication-style/idempotent

-consumer.html
● Data design for event driven systems

○ https://www.ben-morris.com/data-design-for-event-driven-architect
ure-autonomy-encapsulation-and-ordering/

○ “Bear in mind that if you rely on message ordering then you are effectively
coupling your applications together in a temporal, or time-based, sense.”

● Exactly-once delivery is … difficult
○ Avoid at all costs.

Finally...

Come talk to me!

Batch.sh is building truly novel stuff.

If you are interested in solving new
problems and are passionate about
distributed systems, let’s chat!

Our stack/tech:

● 100% event driven
● K8S
● Golang backend
● Electron; react
● Virtually ALL message brokers
● Etcd
● TimescaleDB
● ElasticSearch
● AWS S3 & Athena
● Multi-cloud

Batch is a data pipeline company that enables high-throughput
data observability.

Our platform enables you to:

● Gain visibility into your message bus

○ Expose difficult to “see” data to your devs & data scientists

● Populate your data lake with optimized parquet data

○ With 100% hands-free schema evolution

● Recover from outages by replaying data

● Create a robust backup & disaster recovery strategy

● Improve your tests by using real event data

Shoot me an email:

Ping me on Gophers Slack:

daniel@batch.sh

Daniel Selans

Extra Content

Let’s design an event driven system!

1. Event Driven From Scratch

2. Event Driven From Scratch

3. Event Driven From Scratch

4. Event Driven From Scratch

5. Event Driven From Scratch

6. Event Driven From Scratch

Emit/Consume/React -- in other words

In other words...
1. Sync: Frontend app talks to a backend API to create a user

In other words...
1. Sync: Frontend app talks to a backend API to create a user

2. Both: Backend API creates a DB entry for the user and emits a USER_SIGNUP message

In other words...
1. Sync: Frontend app talks to a backend API to create a user

2. Both: Backend API creates a DB entry for the user and emits a USER_SIGNUP message

3. Async: Mail service consumes USER_SIGNUP event and sends a welcome email to user

In other words...
1. Sync: Frontend app talks to a backend API to create a user

2. Both: Backend API creates a DB entry for the user and emits a USER_SIGNUP message

3. Async: Mail service consumes USER_SIGNUP event and sends a welcome email to user

4. Async: Mail service emits WELCOME_COMPLETE message

In other words...
1. Sync: Frontend app talks to a backend API to create a user

2. Both: Backend API creates a DB entry for the user and emits a USER_SIGNUP message

3. Async: Mail service consumes USER_SIGNUP event and sends a welcome email to user

4. Async: Mail service emits WELCOME_COMPLETE message

5. Async: Billing service also consumes USER_SIGNUP message and creates a Stripe

subscription for the user

In other words...
1. Sync: Frontend app talks to a backend API to create a user

2. Both: Backend API creates a DB entry for the user and emits a USER_SIGNUP message

3. Async: Mail service consumes USER_SIGNUP event and sends a welcome email to user

4. Async: Mail service emits WELCOME_COMPLETE message

5. Async: Billing service also consumes USER_SIGNUP message and creates a Stripe

subscription for the user

6. Async: Billing service emits BILLING_COMPLETE message

In other words...
1. Sync: Frontend app talks to a backend API to create a user

2. Both: Backend API creates a DB entry for the user and emits a USER_SIGNUP message

3. Async: Mail service consumes USER_SIGNUP event and sends a welcome email to user

4. Async: Mail service emits WELCOME_COMPLETE message

5. Async: Billing service also consumes USER_SIGNUP message and creates a Stripe

subscription for the user

6. Async: Billing service emits BILLING_COMPLETE message

7. Async: Audit service consumes USER_SIGNUP, WELCOME_COMPLETE and

BILLING_COMPLETE events and archives them

How does this translate to improved reliability?

(Almost) Everything is async!

Implementation Reality - Organizational

Implementation Reality: Organizational

● Hard: (re-)Defining the architecture (2-4 weeks)
○ Flow diagrams

○ Documentation

○ Examples

● Hard: Becoming a thought-leader for your org (on-going)

● Hard: Convincing leadership (2-4 weeks)

● Medium: Convincing developers (1-4 weeks)

● Medium: Assisting developers (on-going)

● Hard: Communicating the architecture across engineering (4+ weeks)
○ Prepare talks, presentations

Batch Diagram

Batch.sh uses an event-driven architecture

