
Conf42: SRE, Sep 2021

Engineering Reliable Mobile Applications

Pranjal Deo

SRE Program Manager, Client Infrastructure and Firebase

Proprietary + Confidential

A little bit about me

● Site Reliability Engineering (SRE) Program Manager at Google

● External Engagements

○ Blameless Postmortem Chapter in the Site Reliability Workbook

■ Many talks!

○ Mobile reliability publication

■ This talk!

■ Many talks!

● Previous

○ Test automation / software engineering / DevOps at Brightidea Inc.

○ Electrical Engineer

○ Dance instructor

● Passions

○ Travel

○ Gastronomy

https://landing.google.com/sre/workbook/chapters/postmortem-culture/
https://landing.google.com/sre/resources/practicesandprocesses/engineering-reliable-mobile-applications/

Proprietary + Confidential

Agenda

● SRE for Mobile

● Challenges

○ Scale

○ Monitoring

○ Control

○ Change Management

● Strategies for developing resilient native mobile applications

● Case Studies: Google Doodle outage, Search app outage, Thundering Herd problem

● Key takeaways

Proprietary + Confidential

Traditional SRE

● Availability

● Latency

● Efficiency

● Emergency response

● Change management

● Monitoring

● Capacity planning

● etc.

SRE = Job role + mindset1

Hope is not a strategy2

Whole service lifecycle3

Healthy services4

Horizontal projects5

Proprietary + Confidential

Users perceive reliability of our services
through the clients (devices).

What’s the point of five 9s of server availability if your
mobile application cannot access it?

Proprietary + Confidential

SRE for Mobile

Focusing on the server-side does not entirely capture user
experience anymore.

● Monitoring

● Rollouts

● Incident management & resolution

● Catch & fix/rollback issues in production fast

● Affect as few users as possible

Deliver code to users’ devices1

Make sure it works well2

Things may only happen on a client3

Hope is not a mobile strategy either4

Proprietary + Confidential

CHALLENGES

Proprietary + Confidential

Challenge #1

Scale

● Billions of devices

● Thousands of device models

● Hundreds of applications

● Multiple versions of applications

Proprietary + Confidential

Challenge #2

Monitoring

● Metrics have many dimensions because of scale

● Logging / monitoring has a tangible cost to the end

user

Proprietary + Confidential

Challenge #3

Control

● Power lies with the user

● Upgrades come at a cost

Proprietary + Confidential

Challenge #4

Change Management

● No rollbacks

● Power lies with the user

● This is very important!

Proprietary + Confidential

CONCEPTS & STRATEGIES

Proprietary + Confidential

App Availability

Examples of unavailability

● Tap icon, app about to load, then it immediately vanished

● Message saying “application has stopped” or “application not

responding”

● App made no sign of responding to your tap

● Empty screen displayed

● Screen with old results, and you had to refresh

● Eventually abandoned by clicking the back button

Crash reports - Critical to monitor and triage.

Proprietary + Confidential

Realtime Monitoring

● Reduce mean time to resolution (MTTR)

○ Faster problem detection, quicker investigation

● Get quick feedback on production fixes

● Typical server side fixes: Resolution time driven by humans

● Extra for Mobile: How fast can fixes be pushed to devices?

○ Polling oriented mobile experimentation and configuration

○ Uptake rate varies

○ Constrain view of error metrics to devices using your fix

Monitor metrics exposed by app internals

Run UI test probes for user journeys

Proprietary + Confidential

Performance & Efficiency

● Mobile apps on a device share precious resources e.g.

battery, network, storage, CPU, memory

● Particularly important for lower end devices

● Block launches that hamper user happiness

Proprietary + Confidential

Change Management

● Problems found in production can be irrecoverable
● Take extra care when releasing client changes!
● Staged rollouts

○ Gradually gather production feedback
○ Diversify pool of users and devices

● Experimentation
○ Reduce bias caused by better network / devices
○ Release changes via experiments
○ A/B analysis over staged rollout
○ Randomized control and experiment groups

● Feature flags
○ Release code through binary releases and control

user set via feature flags
○ Rollback shouldn’t break the app

● Upgrade side effects and noise
○ Placebo binaries

Proprietary + Confidential

Support Horizons

● How many app versions can SRE meaningfully support?

● Older app version can never really go away

● Trade-off between reliability and business decisions

Proprietary + Confidential

Server-Side Impact

● Client changes to apps impact servers

● Global events can suddenly overwhelm servers

● Client releases can cause unintended consequences

Proprietary + Confidential

CASE STUDIES

Proprietary + Confidential

#1

Android Google Search App (AGSA)
Doodle Crashes
What happened?

● Bad Doodle configuration caused crashes in AGSA whenever

user were shown a SERP (Search Engine Results Page)

● Triggered as doodle rolled out in each timezone

● Fix was submitted for this particular issue (both configuration

and binary fix) but same issue happened again!

● Affected older versions without the fix

Proprietary + Confidential

#1

Android Google Search App (AGSA)
Doodle Crashes
Key Takeaways

● Client-only fixes may not fix everything (e.g. users may not

update to the version with the fix); always include server-side

fixes when possible

● Know your dependencies (especially if you have many feature

teams contributing)

Proprietary + Confidential

#2

Search broken for certain versions of
AGSA
What happened?

● AGSA started crash looping on five older versions - a near

miss of a massive outage

● A simple four character change to a config, caused a crash at

app startup

● Unable to fetch the rolled back config before crashing

● Only recovery: notify users to upgrade or clear app data

Proprietary + Confidential

#2

Search broken for certain versions of
AGSA
Key takeaways

● Lots of older app versions in the wild

● “Apply” before “Commit”: always validate and exercise the

new config before committing (i.e. caching)

● Expire regularly cached configuration in a reliable manner

● Detect and self-recover from crash loops

● Don’t rely on recovery external to the app

● Sending notifications for manual recovery has limited utility

● Monitor crash recovery

Proprietary + Confidential

#3

Thundering Herd problem

What happened?

● A GMSCore (Google Play Services) update caused devices to

register for Firebase Cloud Messaging (FCM) notifications at

install time

● FCM is not scaled to support 2B devices updating at

GMSCore's update rate, so it throttled all GMSCore

registrations globally

● This could easily have been a global outage

Proprietary + Confidential

#3

Thundering Herd problem

Key Takeaways

● Don't make service calls during upgrades

● Server calls should be an app release qualification criteria

● App release rates are probably not well correlated with server

capacity management

Proprietary + Confidential

Hope is not a Mobile strategy

● Rollout changes in a controlled, metric driven way

● Monitor apps in production by measuring critical user

interactions and key health metrics

● Prepare for app’s impact on servers

● Create Incident management processes specific to client side

● Make client reliability a part of your mission!

Proprietary + Confidential

THANK YOU!

