System state clustering using eBPF
data

Contents

0 0 0

WHAT IS EBPF WHAT IS EBPF + EBPF AND SRE POTENTIAL Q&A
CLUSTERING CLUSTERING USE-CASES

eBPF — Extended Berkeley Packer Filter

* eBPF programs are event-driven and are run when the kernel or an application passes a
certain hook point

* Pre-defined hooks include system calls, function entry/exit, kernel tracepoints, network
events, and several others.

* From there we can run our own programs which can pass data back to user space via BPF
maps

eB
Be

Linux
Kernel

PF — Extendec
rkeley Packer

write()

[Process J
read()
| Syscall

P eBPF
v |

Cilter

[

File Descriptor

)

[

3
VFS ¥eBPF

[

Block Device

)

| 4

A eBPF

1
[ﬂ Storage]

Process deBpr

sendmsg() recvmsg()

Gyscall

HeBPF
v |

1
Sockets cBPF

[
| TCP/IP_ cempr
[Network Device]

e
'
[% Netw%’(&al

* Credits https://ebpf.io

eBPF — Extended
Berkeley Packer
Filter

Userspace

Source Code LLVM / clang Bytecode

netdevice

netdevice

TC
Ingress
'

'

..

Kernel

* Credits https://github.com/cilium/cilium

eBPF — Extendec

struct bpf _map def SEC("maps™) kprobe map = {

Berkeley Packer

Cilter

¥

.type = BPF_MAP_TYPE_ARRAY,

key size = sizeof(u3l),

I
n
=
=l
m
(]

o
.
=
o
o
L

ha

wvalue size

.max_entries = 1,

SEC({"kprobe/ xb6d sys execve™)

int kprobe execwe() {

How many times is a kernel function

entered

u3 key = &

ugd initval = 1, *valp;

valp = bpf map lookup elem(&kprobe map, &key);

if (lvalp) {
bpf map_update elem(&kprobe map, &key, &initval, BPF_ANY);
return @;

i

__sync_fetch_and_add(valp, 1);

return @,

* Credits https://github.com/cilium/ebpf

Clustering

* Machine Learning
algorithm which can help
cluster different data
points into classes

e Data points which are
similar tend to be closer
together when
represented
dimensionally

A 4

* Credits geekforgeeks

Clustering —
Iris Example

Petal length

* Credits scikit-learn.org

eBPF generates data points

Clustering can cluster the data points

eBPF +
Data labelling can initially label positive and

C‘ U Ste rl n g negative classes

Production scenario can use that model to predict
the real time data point

eBPF +
Clustering

eBPF XDP/Socket Filter programs generate data
about the received packets over the network

Sandboxed program writes the packet details like
Input IP, bytes etc into a map

User space program reads map and pushes to data
store e.g Redis

Clustering algorithm to understand if request is
normal

Timeseries algorithm to understand if this could be
leading to series of not normal requests

eBPF and
SRE

* Cilium
* Provides the right
level of information
for troubleshooting
application and
connectivity issues

e All of this is available
via HUBBLE
framework — API, CLI
and GUI

a8 OB = ryoed 0605
Network Services & Bandwidth Flow & Policy Ops & Sec
Policy Load Balancing Management Logging Metrics
I | | I |

Cluster Node

l Pod J [Pod J 888 — &2 CNI
cilium]
1T

HAeBPF

Kernel |

<

User

* Credits https://github.com/cilium/cilium

eBPF and
SRE

* Pixie

* Add dynamic eBPF
probes to provide
access to metrics,
events, traces and
logs

* Pixie scripts for
debugging

e Pixie CLI and live Ul

* Credits https://px.dev/

e System performance degradation check

U S e-Ca S e S * Network traffic check

* Preventive maintenance

* Incoming request

Interception by XDP BPF program

Network Traffic
* Data written to a MAP along with details like incoming address, time, etc

u S e Ca S e * User space program reads map and sends data to clustering system to
ascertain whether it belongs to a valid cluster

XDP _PASS
> RX Queue — % Network Stack
BPF
program
XDP_TX XDP_REDIRECT _
TX Queue «—————— » Redirect Map
NIC Driver
XDP _DROP

* Credits David Calavera_ Lorenzo Fontana - Linux Observability with BPF_ Advanced Programming for Performance Analysis and Networking-_O'Reilly Media, Inc._ (2019)

Q& A

