Hodor

Detecting and Remediating Overload in
LinkedIn Microservices

Conf42 SRE, June 2022
Bryan Barkley, Vivek Deshpande

a4

Linked [

“Improve service resiliency by
reliably detecting overloads
and automatically remediating
them while minimizing
production impact.”

Our Mission

-

Agenda

e Hodor Framework Overview

e Overload Detectors: CPU, GC and ThreadPool

e Overload Remediation: Adaptive load shedder and Request Retries
e Monitoring and Rollout

e A Success story

e Related/Future work

Hodor Framework
Holistic Overload Detection and Overload Remediation

e Hodoris designed to detect service overload caused by multiple root
causes, and to automatically remediate the problem by dropping just

enough fraffic

e Hodor has 3 components:
o Overload Detectors
o Load Shedder
o Platform-specific adapter to combine the two

Agenda

e Hodor Framework Overview

e Overload Detectors: CPU, GC and ThreadPool

e Overload Remediation: Adaptive load shedder and Request Retries
e Monitoring and Rollout

e A Success story

e Related/Future work

CPU Overload detection - Heartbeat

e Objective

O Early and accurate detection of CPU bottlenecks
e Heartbeat algorithm
O Heartbeat thread: lightweight background thread on a schedule

o Monitor heartbeat thread wakeups

e Rationale

o Direct way to measure availability of useful CPU cycles

o Applicable irrespective of bare-metal, VM, cgroup, cfs quota/shares config etc.

CPU Overload detection case in prod

prod O _H o o TriggeredCount prod Inbound Traffic CallTime90Pct A =& & a X
500m 2.2k
Heartbeat pP9?0 latency
N - M 1.8k
@i detection activity (+850%)
(Magnitude not important.))
300m 1.4k
1.2k
200m 1.0k
0.8k
100m 0.6k
0.4k
5$€wn-1gm 08:00 10:00 12:00 14:00 16:¢ ‘2}3‘_2‘._:6}.1,1"45 08:00 10:00 12:00 14:00 16:.¢
| -07
Serles T Mini Avg? Max? Last (age) ? Hover Serles T Mini Avg: Max? Last (age) ¢ Hover @
L -Overload Triggered 0 12.20m 529.4m o = L} ‘CallTimed0Pct 217.5 293.2 2.228k 301.5 -
= Inbound Traffic CallTimeAvg A = @ & al B| [oo Cgroups CPU usage percentage_95Pct
. Avg lat .
- vg latency)
" (+250%) p?5 CPU usage
100
600
80
500
400 =
300 40
200 20
e}z{;ﬂums 08:00 10:00 12:00 14:00 16: Uz'il?é_‘g;‘""s 08:00 10:00 12400 14:00; 16
07
Serles 1 Min: Avg?! Max!? Last(age) ! Hover : Serles 1 Mini Avg: Max!: Last(age)! Hover:
LI . _ -CallTineavs. 108.5 148.3 956.5 143.9 -5 - aspet £:072 20.99 132.7 8:312 =

GC Overload detection

e Objective

O Early and accurate detection of bottlenecks caused by excessive GC

e GC Overload Detection algorithm

O Calculate amortized percentage of time spent in GC over a given time window.

o The GC Overhead Tiers based on percentage ranges of GC Overhead.

o If the duration in GC Overhead Tiers exceed the violation period, signal overload

e Rationale

o A unified signal that catches different types of GC issues.

o Detect GC overhead before it causes CPU Overload

GC Overload detection case in prod

prod GC Overload Trigger Count (with one off protection)
1.0
GC Detector
08 . .
Activity
0.6
0.4
0.2
2021-Sep 0 29 (04:00) 29 (08:00) 29 (12:00) 29 (16:00) 29 (20:00) 30 (00:00)
UTG-07
Serles 1 Mini Avg: Max? Last(age) ! Hover :
| | 0 36.53m 1.067 0 (6m) -
prod Inbound Traffic CallTime99Pct A = & a X|
14k
p\ P99 latency
12k
(+900%)
10k
8k
6k
4k
2k
3 \ e
Uzorzc-l-:_,ep [Z10zAT]04:00) 29 (08:00) 29 (12:00) 29 (16:00) 29 (20:00) 30 (00:00)
Serles T Mini Avg: Max? Last(age) ! Hover:
| | 41.35 1.481k 15.77k 755.8 (6m) —‘i

prod Inbound Traffic CallCountTotal
20 .
Traffic (+200%)
40
30
20
10
2021-Sep 29 (04:00) 29 (08:00) 29 (12:00) 29 (16:00) 29 (20:00) 30 (00:00)
uUTC-07
Serles T Mini Avg: Max!? Last (age) ¢ Hover
. . _ cal 1 0 21.49 58.80 20.80 (6m) =
prod Inbound Traffic CallTimeS0Pct
. P90 latency
7k
(+900%)
6k
5k
4k
3K
2k
1K
g
2021-Sep 29 (04:00) 29 (08:00) 29 (12:00) 29 (16:00) 29 (20:00) 30 (00:00)
UTG-07
Serles T Min: Avg? Max!? Last(age)? Hover?
| | callTime9opct 34.10 792.6 8.985k 359.8 (6m) -

Thread Pool Starvation/Overload detection

e Objective
O Early and accurate detection of Thread Pool Starvation
e Thread Pool Overload Detection algorithm
O Monitor ThreadPool Queue wait times

o If athreshold is consistently breached, flag an Overload

e Rationale

o HB and GC detect overload of a physical resource. Thread Pool Detector detects overload of a
“virtual” /non-tangible resource

o Helps alleviate backed up downstreams and/or slowed down DBs

Threadpool Overload detection case in prod

T o D

O

dTriggeredCount 1000_10_of 10

150m

100m

50m

om
2022-May-13

Threadpool
Detector Activity

07:45

A =2 & 4 X

2022-May-13
uTC-07

P99 latency
(+900%)

Thread Pool WaitTimeMax

1A

\
"" { \\‘
,, “g‘@*‘éti;‘\

Threadpool wait
time (+200%)

07:40

2022-May-13 07:30
uTc-07

Avg latency

07:40 07:45

Agenda

e Hodor Framework Overview

e Overload Detectors: CPU, GC and ThreadPool

e Overload Remediation: Adaptive load shedder and Request Retries
e Monitoring and Rollout

e A Success story

e Related/Future work

Adaptive Load Shedder

e Listens to signals from the detectors

e Modulates allowed inbound concurrency
o Shed aggressively and re-ramp conservatively

e Shed requests by returning HTTP 503 which

can be idempotently retried

e Percentage based shedder did not work
well during experimentation

--- control host: no load-shedding

--- freatment host: with load-shedding

= Joad shed

60
40
20
22tun o1 9 2020 20:40 21:00 2120 21:40 2¢
180
w Incoming qps
140
120
80
60
40
2021-Jun-01 20:40 21:00 21:20 21:40 22¢

utc

=

tail latenc

Ed

#ES

ﬁi’cl-dun-m 2020 20:40 21:00 21:20 21:40 22

Overload Failure Retry

e Minimize member impact due to load-shedding
o Automatically retry requests rejected due to overload
o Fail quickly and retry safely (avoiding retry storms)
e Client Side Budget
e Server Side Budget

Agenda

e Hodor Framework Overview

e Overload Detectors: CPU, GC and ThreadPool

e Overload Remediation: Adaptive load shedder and Request Retries
e Monitoring and Rollout

e A Success story

e Related/Future work

Monitoring & Rollout

e When rolling out Hodor we must ensure to not cause unnecessary traffic drops.
e Service analysis and evaluation are a core component of our rollout process.

- Deploy the overload detectors in monitoring mode to gather data
about when they were firing, and if those firings were false positives.

- Correlate firing data from detectors with performance metrics to
determine if there have been any false positives indicating that the
service may not be a good candidate for adoption yet.

“Adding overload detectors to our services has surfaced unexpected behavior that
owners were generally not familiar with.”

Agenda

e Hodor Framework Overview

e Overload Detectors: CPU, GC and ThreadPool

e Overload Remediation: Adaptive load shedder and Request Retries
e Monitoring and Rollout

e A Success story

e Related/Future work

LinkedIn Flagship app incident mitigated

e Traffic shift led to aggressive load-shedding

due to Hodor kicking-in

e Previous traffic shifts did not have a similar

response

e Loadshedding likely turned a major
member impact incident into a minor one;
continued to serve 80% traffic

e Led to quicker discovery of the issue

Dropped traffic A =& 4 X

Load shed

T N B
wswnweﬁs

2021-Jun-30 07:00 08:00 09:00 0L
urc-o7

Series 1 Min: Avg! Max: Last(sge)! Hover:
42.50m 520.1 4.161k 2.324 =%

=
g
{

Inbound Traffic CallTime99Pct

L3

P99 latency

O = = = = o= NN NN
B R R ERRRR ERR R

104

Series 1 Mint Avg! Maxi Last(age): Hover:
601.0 845.1).018k

11111 -

2
g
H
§

09:00

Agenda

e Hodor Framework Overview

e Overload Detectors: CPU, GC and ThreadPool

e Overload Remediation: Adaptive load shedder and Request Retries
e Monitoring and Rollout

e A Success story

e Related/Future work

Related/Future work for Hodor

e Traffic Tiering: Categorize by impact and importance
e New Detectors (Latency based, Eventloop)

e Elastic cluster scaling

Thank you!

