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“Improve service resiliency by
reliably detecting overloads
and automatically remediating
them while minimizing
production impact.”

Our Mission
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Hodor Framework
Holistic Overload Detection and Overload Remediation

e Hodoris designed to detect service overload caused by multiple root
causes, and to automatically remediate the problem by dropping just

enough fraffic

e Hodor has 3 components:
o Overload Detectors
o Load Shedder
o Platform-specific adapter to combine the two
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CPU Overload detection - Heartbeat

e Objective

O Early and accurate detection of CPU bottlenecks
e Heartbeat algorithm
O Heartbeat thread: lightweight background thread on a schedule

o Monitor heartbeat thread wakeups

e Rationale

o Direct way to measure availability of useful CPU cycles

o Applicable irrespective of bare-metal, VM, cgroup, cfs quota/shares config etc.



CPU Overload detection case in prod
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GC Overload detection

e Objective

O Early and accurate detection of bottlenecks caused by excessive GC

e GC Overload Detection algorithm

O Calculate amortized percentage of time spent in GC over a given time window.

o The GC Overhead Tiers based on percentage ranges of GC Overhead.

o If the duration in GC Overhead Tiers exceed the violation period, signal overload

e Rationale

o A unified signal that catches different types of GC issues.

o Detect GC overhead before it causes CPU Overload



GC Overload detection case in prod
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Thread Pool Starvation/Overload detection

e Objective
O Early and accurate detection of Thread Pool Starvation
e Thread Pool Overload Detection algorithm
O Monitor ThreadPool Queue wait times

o If athreshold is consistently breached, flag an Overload

e Rationale

o HB and GC detect overload of a physical resource. Thread Pool Detector detects overload of a
“virtual” /non-tangible resource

o Helps alleviate backed up downstreams and/or slowed down DBs



Threadpool Overload detection case in prod

T o D

O

dTriggeredCount 1000_10_of 10

150m

100m

50m

om
2022-May-13

Threadpool
Detector Activity

07:45

A =2 & 4 X

2022-May-13
uTC-07

P99 latency
(+900%)

Thread Pool WaitTimeMax

1A

\
"" { \\‘
,, “g‘@*‘éti;‘\

Threadpool wait
time (+200%)

07:40

2022-May-13 07:30
uTc-07

Avg latency

07:40 07:45




Agenda

e Hodor Framework Overview

e Overload Detectors: CPU, GC and ThreadPool

e Overload Remediation: Adaptive load shedder and Request Retries
e Monitoring and Rollout

e A Success story

e Related/Future work



Adaptive Load Shedder

e Listens to signals from the detectors

e Modulates allowed inbound concurrency
o Shed aggressively and re-ramp conservatively

e Shed requests by returning HTTP 503 which

can be idempotently retried

e Percentage based shedder did not work
well during experimentation
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Overload Failure Retry

e Minimize member impact due to load-shedding
o Automatically retry requests rejected due to overload
o Fail quickly and retry safely (avoiding retry storms)
e Client Side Budget
e Server Side Budget
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Monitoring & Rollout

e When rolling out Hodor we must ensure to not cause unnecessary traffic drops.
e Service analysis and evaluation are a core component of our rollout process.

- Deploy the overload detectors in monitoring mode to gather data
about when they were firing, and if those firings were false positives.

- Correlate firing data from detectors with performance metrics to
determine if there have been any false positives indicating that the
service may not be a good candidate for adoption yet.

“Adding overload detectors to our services has surfaced unexpected behavior that
owners were generally not familiar with.”
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LinkedIn Flagship app incident mitigated

e Traffic shift led to aggressive load-shedding

due to Hodor kicking-in

e Previous traffic shifts did not have a similar

response

e Loadshedding likely turned a major
member impact incident into a minor one;
continued to serve 80% traffic

e Led to quicker discovery of the issue
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Related/Future work for Hodor

e Traffic Tiering: Categorize by impact and importance
e New Detectors (Latency based, Eventloop)

e Elastic cluster scaling



Thank you!



