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“Improve service resiliency by 
reliably detecting overloads 

and automatically remediating 
them while minimizing 
production impact.”

Our Mission
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● Hodor is designed to detect service overload caused by multiple root 
causes, and to automatically remediate the problem by dropping just 
enough traffic

● Hodor has 3 components:
○ Overload Detectors
○ Load Shedder
○ Platform-specific adapter to combine the two

Hodor Framework

Holistic Overload Detection and Overload Remediation



Agenda

● Hodor Framework Overview

● Overload Detectors: CPU, GC and ThreadPool

● Overload Remediation: Adaptive load shedder and Request Retries

● Monitoring and Rollout

● A Success story

● Related/Future work



CPU Overload detection - Heartbeat
● Objective

○ Early and accurate detection of CPU bottlenecks

● Heartbeat algorithm

○ Heartbeat thread: lightweight background thread on a schedule

○ Monitor heartbeat thread wakeups

● Rationale
○ Direct way to measure availability of useful CPU cycles

○ Applicable irrespective of bare-metal, VM, cgroup, cfs quota/shares config etc.



CPU Overload detection case in prod

Heartbeat 
detection activity 
(Magnitude not important.)

p90 latency 
(+850%)

Avg latency 
(+250%) p95 CPU usage



GC Overload detection
● Objective

○ Early and accurate detection of bottlenecks caused by excessive GC

● GC Overload Detection algorithm

○ Calculate amortized percentage of time spent in GC over a given time window.

○ The GC Overhead Tiers based on percentage ranges of GC Overhead.

○ If the duration in GC Overhead Tiers exceed the violation period, signal overload

● Rationale
○ A unified signal that catches different types of GC issues. 

○ Detect GC overhead before it causes CPU Overload



GC Overload detection case in prod

p90 latency 
(+900%)

p99 latency 
(+900%)

Traffic (+200%)GC Detector 
Activity



Thread Pool Starvation/Overload detection
● Objective

○ Early and accurate detection of Thread Pool Starvation

● Thread Pool Overload Detection algorithm

○ Monitor ThreadPool Queue wait times

○ If a threshold is consistently breached, flag an Overload

● Rationale
○ HB and GC detect overload of a physical resource. Thread Pool Detector detects overload of a 

“virtual”/non-tangible resource

○ Helps alleviate backed up downstreams and/or slowed down DBs



Threadpool Overload detection case in prod

Avg latency 
(+900%)

Threadpool wait 
time (+900%)

p99 latency 
(+900%)

Threadpool 
Detector Activity
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Adaptive Load Shedder
● Listens to signals from the detectors

● Modulates allowed inbound concurrency

○ Shed aggressively and re-ramp conservatively

● Shed requests by returning HTTP 503 which 
can be idempotently retried

● Percentage based shedder did not work 
well during experimentation

--- control host: no load-shedding

--- treatment host: with load-shedding

load shed

incoming qps

tail latency



Overload Failure Retry

● Minimize member impact due to load-shedding

○ Automatically retry requests rejected due to overload

○ Fail quickly and retry safely (avoiding retry storms)

● Client Side Budget

● Server Side Budget
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Monitoring & Rollout
● When rolling out Hodor we must ensure to not cause unnecessary traffic drops.
● Service analysis and evaluation are a core component of our rollout process.

“Adding overload detectors to our services has surfaced unexpected behavior that 
owners were generally not familiar with.”

- Deploy the overload detectors in monitoring mode to gather data 
about when they were firing, and if those firings were false positives.

- Correlate firing data from detectors with performance metrics to 
determine if there have been any false positives indicating that the 
service may not be a good candidate for adoption yet.
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LinkedIn Flagship app incident mitigated
● Traffic shift led to aggressive load-shedding 

due to Hodor kicking-in

● Previous traffic shifts did not have a similar 
response

● Loadshedding likely turned a major 
member impact incident into a minor one; 
continued to serve 80% traffic

● Led to quicker discovery of the issue

Load  shed

p99 latency
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Related/Future work for Hodor

● Traffic Tiering: Categorize by impact and importance

● New Detectors (Latency based, Eventloop)

● Elastic cluster scaling



Thank you!


