
5 Security Best Practices for 
Production Ready Containers
Martin Wimpress



2

Build secure containers, faster
Slim.AI was created to give developers the power to 
build safer cloud-native applications with less friction.

Slim.AI

Martin Wimpress
Snr. Director of Developer 
Relations & Community



3

Agenda

Example app

Container best practices

Container scanning & analysis

Choosing a base image

Container slimming



Example App
With multiple base images



5

 app.py
#!/usr/bin/env python3

from flask import Flask, jsonify

app = Flask(__name__)
app.config['DEBUG'] = True

@app.route('/')
def index():
    return jsonify({'msg': 'Success'})

@app.route('/hello')
def hello():

return jsonify({'msg': 'Hello World!'})

if __name__ == "__main__":
    app.run(host='0.0.0.0', port=8008)



Container best practice
A better Dockerfile



7

Reputable base image
Official Python base image.

Layer construction
Minimize cache invalidation and 
optimise build performance.

ENTRYPOINT
Proper signal handling.

A Better Dockerfile
FROM python:3.9.13-slim-bullseye

RUN apt-get -y update && apt-get -y upgrade && \
    apt-get -y clean && rm -rf /var/lib/apt/lists/*

WORKDIR /app
COPY --chown=nobody:nobody app/requirements.txt ./
RUN pip3 install --no-cache-dir -r requirements.txt
COPY --chown=nobody:nobody app/app.py ./

USER nobody
EXPOSE 8008
ENTRYPOINT ["python3","app.py"]



8

root by default
If you do not specific a USER, your 
app runs as root by default. 

nobody
An unprivileged system account 
available in most base images.

Limit impact
Significantly minimizes impact if 
your container is compromised.

USER nobody

USER nobody



9

python:latest
No source of truth. 
Unpredictable.

python:3.9.13
No language fixes or 
improvements.
Reproduced with ease and 
reliability.

Pinned “distro” & language versions

FROM python:3.9.13-slim-bullseye



10

Base image latency
Base images can be days behind 
updates already available via 
package repositories.

Use a stable base
Using a stable base and “pinned” 
language versions will prevent 
unexpected upgrades.

Apply updates

RUN apt-get -y update && apt-get -y upgrade && \
    apt-get -y clean && rm -rf /var/lib/apt/lists/*



11

RUN text is cached
The text of the RUN command is 
used to determine if the cache 
should be used.

Caches may be insecure
Caches may contain old insecure 
packages even after updates have 
been published.

Build processes
Your normal build process and a 
daily fresh rebuild using --pull 
--no-cache

Layer caching

docker build --pull --no-cache -f app:latest .



Container scanning & analysis
Know what is in your container



13

Container scanning

docker scan -f Dockerfile app:latest

docker sbom app:latest

Vulnerability scanning
Scan your containers for known 
vulnerabilities.

Generate SBOMs
Know what is inside your 
containers.

Add to build pipelines
Review routinely so you know 
what you’re really shipping to 
production.



14

Container analysis

Understand
Knowing what’s in a container is 
critical to securing your software 
supply chain.

Inspect
Slim.AI lifts the veil on container 
internals so you can analyze, 
optimize, and compare changes 
before deploying your 
cloud-native apps.



Choosing a base image
Start with a good security posture



16

How much smaller?
The regular “fat” 
python:3.9.13-bullseye image 
is 915MB.

Smaller images
Slim container images are faster 
to deploy (lower size) and faster 
to start (fewer files).

A “slim” base image

Size
python:3.9.13-alpine3.15 51MB 🥇

gcr.io/distroless/python3 54MB 🥈(Multistage)

ubuntu:22.04 78MB 🥉(No Python)

python:3.9.13-slim-bullseye 125MB



17

Recommended packages
Most system package install 
default to installing all 
recommended packages.

Fewer packages
Fewer packages generally results 
in smaller images with a reduced 
attack surface.

Fewer packages

RUN apt-get -y --no-install-recommends install 
python3-minimal python3-pip

RUN dnf --nodocs -y install 
--setopt=install_weak_deps=False python3



18

Best practise works
Already significantly smaller than 
the regular  915MB 
python:3.9.13-bullseye base 
image!

“Smaller is safer”
So the saying goes.

App by image size

Size
python:3.9.13-alpine3.15 62MB 🥇

gcr.io/distroless/python3 72MB 🥈

Python:3.9.13-slim-bullseye 135MB 🥉

ubuntu:22.04 139MB



19

Commercial vendor SLAs
Commercially backed Linux 
vendors commit to security SLAs. 
Community projects are best 
efforts.

Alpine has issues
Python, Node and some other 
languages, can result in 
significantly slower builds and 
introduce runtime bugs. Great for 
Go and Rust however.

App by vulnerability count

Total  Crit  High
python:3.9.13-alpine3.15 0      0     0 🥇

ubuntu:22.04 15     0     0 🥈

gcr.io/distroless/python3 46     3  7 🥉

python:3.9.13-slim-bullseye 84     13    3



20

What if…
Low complexity of Ubuntu and 
the security profile and size of 
Alpine? 🤔💭



Container Slimming
Optimise and minify your containers



22

Optimise
DockerSlim and Slim SaaS can 
automatically optimize your 
container images.

Free & Open Source
DockerSlim is free and open 
source software available from 
GitHub.

https://dockersl.im

https://slim.ai

DockerSlim & Slim.AI

docker-slim build --tag app:latest

https://dockersl.im
https://slim.ai


23

Analysis
docker-slim optimizes 
containers by understanding 
what your application actually 
needs using various analysis 
techniques.

New single layer image
Creates a new single layer image 
using only the required files from 
the original “fat” image.

How does DockerSlim work?



24

Ship “No Code”
Only ship into production what your app requires. Slim containers can be up to 30X 
smaller.

Faster
Slim container images are faster to deploy (lower size) and faster to start (fewer 
files).

Cost savings
Slim container images can be less expensive to store and transfer.

Security
Slim containers reduce the attack surface and vulnerability count. Unnecessary 
shells, tools, utilities and libraries are entirely removed.

Why?



25

Slim all the things!
In most cases there are 
significant size reductions to be 
had slimming any container 
image, regardless of build 
technique and base image used.

App by slimmed image size

Fat    Slim  Reduced
python:3.9.13-alpine3.15 62MB   20MB  3.13X

gcr.io/distroless/python3 72MB   22MB  3.05X

python:3.9.13-slim-bullseye 135MB  23MB  5.95X

ubuntu:22.04 139MB  25MB  5.06X



26

Component searches
Analysing slimmed containers for 
vulnerable is currently a manual 
task, as the meta data scanning 
tools use is no longer available.

Only takes a few minutes (at 
most) using Slim.AI SaaS or 
Slim.AI Docker Extension.

Slimmed App by vulnerability count

Total
python:3.9.13-alpine3.15 0

ubuntu:22.04 0



Conclusions

What did we learn?



28

Conclusions
● Follow container best practice
● USER should be unprivileged
● Pin your base image
● Use a stable base image & apply updates
● Be mindful of layer caching
● Container scanning and analysis are essential
● Do not install recommended packages
● Linux vendors have security SLAs
● Assess your base image options
● You can slim Alpine and Distroless containers
● Slimming significantly reduces vulnerabilities & 

attack surface



Thank 
you!

@SlimDevOps

Keep building.


