
How to achieve the scalability, high 
availability, and elastic ability of your 
database infrastructure on Kubernetes

Trista Pan
panjuan@apache.org



Trista Pan

Bio: https://tristazero.github.io

LinkedIn: https://www.linkedin.com/in/panjuan

GitHub: https://github.com/tristaZero

Twitter: @tristaZero

Project Twitter: @ShardingSphere

SphereEx Co-Founder & CTO

Apache Member

AWS Data Hero

Tencent Cloud TVP

Apache ShardingSphere PMC

Apache brpc (Incubating) & Apache AGE 

& Apache HugeGraph (Incubating) mentor

China Mulan Community Mentor



Content

ü SRE & SLA & DBRE

ü The new needs for a database on the cloud

ü Idea & architecture

ü Handling SQL

ü Demo



SRE & SLA & DBRE

ü Database Reliability Engineering (DBRE) is basically a 
subset of Site Reliability Engineering (SRE)

ü Stateless service VS stateful service (Persistence & status)

ü SLA (Service Level Agreement) & SLO (Service Level
Objectives) & SLI (Service Level Indicators )



New needs for databases



The needs for a database on the cloud

ü Large data to manage

ü Efficient queries

ü Data security

ü Traffic governance

ü Elastic scaling

ü Backup & recovery

ü Metrics

ü Portability

ü Out-of-the-box deployment

Data Sharding

HA & read/write splitting & traffic strategy

Reshard for computing nodes and storage nodes

Helm & Operator on Kubernetes

Data Encryption

Monitor



Monolithic database on the cloud



Benefits

ü Leverage the existing databases

ü Upgrade it into a distributed database at low cost

ü SQL audit & Traffic governance & Elastic scaling

ü Solve the headache of moving database into
Kubernetes

ü Out-of-the-box deployment

ü No lock-in



Distributed database



Application -> Database

Before

After



Apache ShardingSphere



ShardingSphere clients



ShardingSphere features



ShardingSphere on Cloud

https://shardingsphere.apache.org/oncloud/



Demo

https://github.com/apache/shardingsphere-on-cloud



The handling process of one SQL



The demo show

1. Deploy two PostgreSQL (Storage node) clusters made of a primary node and a replica
2. Deploy two ShardingSphere-Proxy (Computing node) and ShardingSphere-governance
3. Add PostgreSQL resources and their relationship into ShardingSphere-Proxy
4. Create sharding table t_user on ShardingSphere-Proxy
5. Show the metadata of this distributed database system
6. INSERT data for test on ShardingSphere-Proxy
7. Preview SELECT routing result
8. Execute SELECT query



Step 1, 2,
git clone https://github.com/apache/shardingsphere-on-cloud
cd charts/shardingsphere-operator-cluster
helm dependency build
helm install shardingsphere-cluster shardingsphere-operator-cluster -n sharding-test

https://github.com/apache/shardingsphere-on-cloud


Step 3, 4, 5



Step 6, 7, 8



Bio: https://tristazero.github.io

LinkedIn: https://www.linkedin.com/in/panjuan

GitHub: https://github.com/tristaZero

Twitter: @tristaZero

Project Twitter: @ShardingSphere

Thanks!
Any questions?


