
Git those passwords out your repos! 
Detecting leaked secrets at scale

Daniel Oates-Lee



Daniel Oates-Lee

DevSecOps Engineer and director of Punk Security

• DevSecOps enthusiast

• Terraform

• Security guy

• Geek

#> whoami



Punk Security

• DevSecOps consultancy

• 4 x Opensource tools

• Home of the DevSecOps CTF

#> whoarewe



o What is the problem
o Secrets leak types
o What can go wrong
o How can we defend
o secretMagpie

content



A secret is publicly accessible
a. Should be, but too many permission
b. Shouldn’t be

What is the problem?



A secret is not managed correctly and is then:
a. Written to a log or trace output
b. Used to elevate privilege
c. Used by an individual to gain access

What is the problem?



Types of hardcoded secrets

o passwords
o api keys
o tokens
o private certificates/keys

What is the problem?



Where can it exist?

o Files

What is the problem?



Where can it exist?

o Files
o GIT messages or history

What is the problem?



What can go wrong?



What can go wrong?

Feature A

Feature B

HeadMain



What can go wrong?

Feature A

Feature B

Username=“admin”
Password=“admin”

.env

$ git commit  -m “add creds”
$ git push

Head



What can go wrong?

Feature A

Feature B

Username=“admin”
Password=“admin”

.env

Head



What can go wrong?

Feature A

Feature B

Username=“admin”
Password=“{{ password }}”

.env

$ git commit  -m “removed 
password”
$ git push

Head



What can go wrong?

Feature A

Feature B

Username=“admin”
Password=“{{ password }}”

.env

Username=“admin”
Password=“admin”

.env

Head



What can go wrong?

Feature A

Feature B

Username=“admin”
Password=“{{ password }}”

.env

Username=“admin”
Password=“admin”

.env

Head



What can go wrong?

Feature A

Feature B

Head



What can go wrong?

Feature A

Feature B

Username=“admin”
Password=“admin”

.env

$ git commit  -m “add creds”
$ git push

Head



What can go wrong?

Feature A

Feature B

Username=“admin”
Password=“admin”

.env

$ git commit  -m “add creds”
$ git pushFeature A

Head



What can go wrong?

Feature A

Feature B

Username=“admin”
Password=“{{ password }}”

.env

$ git commit  -m “removed password”
$ git push

Head



What can go wrong?

Feature A

Feature B

Username=“admin”
Password=“{{ password }}”

.env

Username=“admin”
Password=“admin”

.env

Head



What can go wrong?

Feature A

Feature B

Username=“admin”
Password=“admin”

.env

Head



DevSecOps
o Secret Scanning tools

How do we defend?

Developer

Pre-commit

CI Pipeline

Feature A



DevSecOps
o Findings and rotation

o Record/ticket
o Rotation of secret
o Training
o  RED team Manual verification checks

How do we defend?



DevSecOps
o Secret management

o Secrets Vaults
o Log access to secrets
o Rotate regularly
o Encryption

How do we defend?



• Pre-secret scanning
• CI pipeline or manual tool
• Two secret scanners
• Easy to read output

secretMagpie?

https://github.com/punk-security/secret-magpie-cli



secretMagpie?

https://github.com/punk-security/secret-magpie-cli











questions?



Punk Security

Automating quality and
security checks


	Slide 1: Git those passwords out your repos!  Detecting leaked secrets at scale
	Slide 2: #> whoami
	Slide 3: #> whoarewe
	Slide 4: content
	Slide 5: What is the problem?
	Slide 6: What is the problem?
	Slide 7: What is the problem?
	Slide 8: What is the problem?
	Slide 9: What is the problem?
	Slide 10: What can go wrong?
	Slide 11: What can go wrong?
	Slide 12: What can go wrong?
	Slide 13: What can go wrong?
	Slide 14: What can go wrong?
	Slide 15: What can go wrong?
	Slide 16: What can go wrong?
	Slide 17: What can go wrong?
	Slide 18: What can go wrong?
	Slide 19: What can go wrong?
	Slide 20: What can go wrong?
	Slide 21: What can go wrong?
	Slide 22: What can go wrong?
	Slide 23: How do we defend?
	Slide 24: How do we defend?
	Slide 25: How do we defend?
	Slide 26: secretMagpie?
	Slide 27: secretMagpie?
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: questions?
	Slide 33: Punk Security

