
1

DECEMBER 05 2024

From Monolith to
Microservices:
A Guide to Seamless
Transitions

By
Daniil Koshelev

1

2

Agenda
01

02

03

05

04

Design for failure

Architectures overview

Relation to highload

Practical Example

Challenges and solutions

2 2

3

A method for
documenting decisions
made for the
implementation of an
information system

Software Architecture

Decisions are presented as a connection
between several components. They are
provided in a form that is accessible for
reuse. Architecture is always considered
from different perspectives.

4

A monolithic architecture is a traditional software
design approach where the entire application is
built as a single, unified unit.

Monolithic Architecture

+ -

Simpler Development Scalability Issues

Ease of Deployment Tight Coupling

Performance Slower Development

Centralized Management Limited Agility

Deployment Risks

5

A microservices architecture divides an application
into a collection of small, loosely coupled, and
independently deployable services

Microservices Architecture

+ -

Independent Scaling Complexity in Management

Faster Development and
Deployment

Inter-Service
Communication Overhead

Technology Diversity Security Challenges

Fault Isolation Data Consistency

Agility and Flexibility Cost

6

Here's when a microservice architecture might be a better choice

1. Scalability and High Demand
2. Complex, Evolving Applications
3. Independent Deployment
4. Team Structure and Ownership
5. Need for Technology Diversity
6. Fault Tolerance and Isolation
7. Global or Distributed Operations
8. Integration with Third-Party Services
9. Agile Development and Innovation

10. Legacy System Modernization

7

Microservices might not fit well if

1. The application is simple and small
2. Team expertise is limited
3. Infrastructure resources are constrained
4. Low development velocity is acceptable

8

Highload

Compute-intensive:
The bottleneck is the CPU.
Data-intensive applications (DIA):
Challenges:

● Volume of data
● Quality of data
● High rate of change
● High level of complexity

9

Highload

There is no clear definition of highload.
Signs of highload:

● The system can no longer handle the
current load.

● Common approaches are insufficient.
● There is an urgent need to scale the

infrastructure.
● A single server is not enough to serve

the customers.
● Hardware cannot cope with the

increased loads.
● Existing tools and resources cannot

solve the emerging problems.

10

Key questions

1. Reliability
2. Scalability
3. Ease of maintenance

11

Design for failure

12

Design for failure

Example – order processing service

13

Handling service degradations

In the case of a service failure - external or internal to the system
- it must be properly handled.
An good option for handling degradation is using a fallback
service

14

Handling service degradations

An good option for handling degradation is to use a cache
service for the data storage. Multi-level caching is also possible

15

Handling service degradations

If you need to save some data to persistent storage + send a message
to a queue, you must use the transactional outbox template to
implement delivery guarantees.
https://microservices.io/patterns/data/transactional-outbox.html

16

Code Complexity Distributed

Major Dilemma Security Challenges Problem

Data Migrations Technologies High Entry Barrier

Responsibilities Caches

17

Code Complexity

1. Tightly Coupled Code
2. Hard to Understand & Maintain
3. Slow Development & Deployment
4. Limited Flexibility
5. High Risk of Bugs
6. Low tests coverage
7. High entry barrier
8. Recruitment challenges

18

Data Management and Decoupling

Monolithic systems often have tightly coupled data structures. Migrating to microservices
requires segregating these data sources into smaller, independent modules.

Solutions:
- Database-per-service pattern

https://microservices.io/patterns/data/database-per-service.html
- Event sourcing or change data capture (CDC)

https://microservices.io/patterns/data/event-sourcing.html
- Data replication and shared databases as temporary measures while gradually migrating

19

Data Management and Decoupling

20

Data Management and Decoupling

21

Multilayered Caches

The method call may look like this:

userService.GetUser(id), which encapsulates all the logic for working with the
multi-layered cache.

Question: What problems do you see with such schemes?

22

Service Communication and Interdependencies

Microservices rely heavily on communication between services, introducing latency,
failure points, and complex dependencies.

Solutions:
- Message queues (e.g., RabbitMQ, Kafka) to reduce coupling
- Service discovery tools (e.g., Consul, Eureka) for seamless inter-service

communication
https://microservices.io/patterns/index.html#service-discovery

- Circuit breakers and retries with backoff to handle failures
https://microservices.io/patterns/reliability/circuit-breaker.html

23

Security

Microservices increase the number of communication endpoints, exposing the
system to vulnerabilities.

Solutions:
- API gateways to centralize authentication, authorization, and request validation

https://microservices.io/patterns/apigateway.html
- OAuth 2.0 and token-based authentication (e.g., JWT) for secure access

control
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-1-01

- Penetration testing and audits

24

Deployment and Continuous Integration/Continuous Deployment

Deploying and managing multiple microservices is complex, especially when
transitioning from a monolithic system.

Solutions:
- Containerization (e.g., Docker) and orchestration tools (e.g., Kubernetes) for

consistency in deployments.
- CI/CD pipelines to automate builds, tests, and deployments.
- GitOps for infrastructure as a code

25

Monitoring and Debugging

Distributed systems are harder to monitor and debug due to numerous services and
potential points of failure.

Solutions:
- Centralized logging using tools like ELK Stack or Fluentd
- Distributed tracing solutions (e.g., Jaeger, Zipkin)

https://microservices.io/patterns/observability/distributed-tracing.html
- Service mesh technologies (e.g., Istio, Linkerd) for observability and traffic

management

26

Organizational Resistance and Skill Gaps

Teams may resist change due to a lack of familiarity with microservices or fear of
increased workload.

Solutions:
- Training programs and workshops for teams.
- Transition of responsibilities to smaller, cross-functional teams
- Start with a pilot project

27

Managing Legacy System Integration

Legacy systems often need to remain operational during the migration process,
leading to challenges in integration.

Solutions:
- Strangler patterns
- Facades or adapters to bridge monolithic and microservices environments
- Maintain compatibility layers

28

Performance and Scalability

Microservices introduce network overhead and require careful scaling strategies.

Solutions:
- Lightweight protocols like gRPC
- Horizontal scaling and autoscaling features

https://microservices.io/patterns/deployment/service-deployment-platform.ht
ml

- Performance testing

29

Dependency Management

Managing dependencies between microservices is complex and can lead to
cascading failures.

Solutions:
- Event-driven architectures

https://microservices.io/patterns/data/domain-event.html
- Clear service contracts (e.g., API specs using OpenAPI/Swagger)
- API versioning for backward compatibility

30

Practical Example
Token management
service
Will generate and check API access tokens

31

User wants to view some content and provides his token

32

33

34

Problem: Some other module uses sessions database

35

Could be even worse with different caches

36

37

38

Designing
Data-Intensive
Applications

References

Building
Microservices with
Go.

Microservices.io Distributed Systems
4th edition (2023)

By M. Kleppmann

https://www.distributed-system
s.netaindex.php/books/ds4/

https://microservices.io/patterns/in
dex.html

By Nic Jackson

39

Thank you for your attention!

Contacts:
LinkedIn: https://www.linkedin.com/in/daniil-koshelev/
Telegram: @kdaniil405
Email: dkoshelev405@gmail.com

https://www.linkedin.com/in/daniil-koshelev/

