

whoami

Danish Tariq
● Learner.
● Security Engineer.
● Former top-rated professional at Upwork.
● Featured in "The Register" for an initial workaround for the NPM dependency

attacks.
● Recent CVEs include - CVE-2022-2848 & CVE-2022-25523.
● Was a moderator @ OWASP 2022 Global AppSec APAC.
● Helped and got acknowledged by companies like include Microsoft, Apple, Nokia,

Blackberry, and Adobe to name a few.
● Certified Ethical Hacker (Practical) & Certified Vulnerability Assessor (CVA)
● HITB Trainer
● Spoke @ BlackHat.

Disclaimer
This talk/presentation is for educational purposes and is

intended to spread awareness in a way that you could be
vigilant. Nothing here is presented to be used in any

malicious/illegal/unethical way.

Supply Chain
Traditionally and generally supply chain means the involvement
or a network of suppliers, raw materials, and manufacturer(s)
etc. to produce a specific final product and then supply to the
final consumer.

It involves:-

- People
- Entities
- Information
- Resources
- Activities

Software Supply Chain
Software supply chain is anything that goes into the codebase
until it made it to production whether we talk about the
dependencies, binaries, or other components.

Package

Dependencies

Build Source

Developer User

Image courtesy of xkcd.com

A chain is only as strong as its weakest link

Supply chain attacks

Package

Dependencies

Build Source

Developer User

Security issues we are going to discuss today and highlight few

Examples
Vulnerabilities - Simply a vulnerability in a dependency is mostly a
vulnerability in your codebase i.e. Log4Shell

TypoSquatting - Mimicking the name of a trustworthy package to
fool developers to trust a malicious one.
i.e. rust_decimal -> rustdecimal.
i.e. Pykafka -> Pymafka

RepoJacking - Attacker could claim Repo. username when an
actual person changes the name

Examples
Account takeover - Taking over an email address or account of
legit maintainer of a package to push out malicious packages.

Dependency confusion -
A security researcher was able to breach Microsoft, Uber, Apple,
and Tesla. The researcher, Alex Birsan, took advantage of
dependencies that applications use to provide services to
end-users. Through these dependencies, Birsan was able to
transmit counterfeit yet harmless data packets to high-profile users.
-Fortinet.

● The attack on ASUS, according to Symantec researchers, took
advantage of an update feature and impacted as many as
500,000 systems. In the attack, an automatic update was used
to introduce malware to users’ systems.
- Fortinet

● These companies were affected by Log4Shell in one way or
another -
Apple, Tencent, Twitter, Baidu, Steam, Minecraft, Cloudflare,
Amazon, Tesla, Palo Alto Networks, IBM, Pulse Secure,
Ghidra, ElasticSearch, Apache, Google, Webex, LinkedIn,
Cisco and VMware.

npm (Node Package Manager)
- npm is the world's largest Software Registry

- JavaScript completes its ninth year in a row as the most
commonly used programming language. (Stack Overflow’s
2021 Developer Survey) & JavaScript currently stands as the
most commonly-used language in the world (64.96%)

Example of a package

npm (Node Package Manager)
- npm packages are used by developers on a regular basis.
- There are maintainer(s) of these packages who could push out

updates.

Credits: Npmjs.com (31 Oct 2022)

https://docs.google.com/file/d/1Oue6iWbuBsH1-xV49IfGKr3VrDZnHiuJ/preview

npm (Node Package Manager)
- What if the accounts of those maintainers get hacked?

- There are two common possibilities that we could consider

- What if their email addresses are takeoverable?

- What if their passwords are leaked in some breach?

Maintainer email address takeover.
● Package is maintained by maintainer(s).

● Those maintainers could make changes, push out new

updates.

● Maintainer account is linked with an email address

(obviously).

● What if the domain of that email address is expired ?

maintainer@expired.com

mailto:maintainer@expired.com

Maintainer email address takeover.

● If the domain is expired of an email address.

● An attacker could potentially takeover the domain by

buying it again and then create a same email address.

● Now an attacker could takeover an account of that

maintainer !

● What does that mean ? or What’s the significance ?

Significance of maintainer email - Recently.

Credits: The Register.

36,000
dependant

projects

Package

Maintainer(s)

Software
Registry
Account

Domain

Example of a package on which 36K+ projects
depends.

36,000
dependant

projects

Package

Maintainer(s)

Software
Registry
Account

Expired
Domain

Email

36,000
dependant

projects

Package

Software
Registry
Account

Expired
Domain

Email Attacker

Process - Attacker’s perspective
● Attacker looks for the maintainer(s) of a target package.

● Attacker takes out a maintainer(s) email address(es).

● He/she would see whois data of the domain(s) of the email

address(es).

● If the domain is expired he would buy that domain.

● Create and email inbox same to that of victim.

● Forgot password on software registry.

● Create malicious updates and so on.

Defensive strategy for projects or companies
npm packages

Credits: The Register.

Defensive strategy for projects or companies
Manually

● List down all the packages that your company is using or use
the pre-organized lists within your codebase.

● Query each package for the below command for the
maintainer(s) email address(es). (this needs npm installation in
CLI).

Defensive strategy for projects or companies
Manually

● Now you would have output containing email addresses. Copy
that output.

● Separate the email addresses and separate the list of all the
domains.

● Run Whois on all the domains and you would find out if any
domain is expired.

● Third-party tools like email identifier. from the bulk data and
email validators could be used

Defensive strategy for projects or companies
Automated

● Mostly, hundreds of packages are used by a single org.
● Preferable to repeat this on regular basis.
● Cron-job could be implemented with this to keep your

codebase secure from this attack vector too!
● These were the motivations behind sharing this automated

script.

Defensive strategy for projects or companies
Automated

● Wrote a mini tool which could identify the takeoverable
packages in your codebase for you.

Defensive strategy for projects or companies
Automated - Demo

● Install it. - could be accessible @
https://github.com/Splint3r7/npm-account-hijacking-scanner

● Test out a single package with the following command.
bash npm-account-hijacking.sh -p package_name_here

https://github.com/Splint3r7/npm-account-hijacking-scanner

Defensive strategy for projects or companies
Automated - Demo

● Whole list of your packages could be scanned with the below
command. Compile a list in your file “packages.txt”.

● bash npm-account-hijacking.sh -f packages.txt

Research – world-wide-how

● In this research, it was a motivation to found out what’s the
security posture of packages in general. (against the account
takeover possibilities).

● World-Wide-Scan
● Packages were collected from the publicly available sources.
● Crafted and modified scripts + our high RAM servers and

budget were utilized to conduct this research.

$ /usr/local/bin/whoami
Hassan Khan Yusufzai

● Senior Security Engineer
● Focused Researcher
● Did OSCP for fun
● Recent CVEs include - CVE-2022-1556 &

CVE-2022-1391.
● Helped and got acknowledged by companies like

include Google, Microsoft, Dell, Intel, Magento
and other 200+

● Author of Rails Security Guide
● HITB Trainer
● Spoke @ BlackHat.
● Love to mass scan the for fun ＼(^o^) /
● Traveling the world

http://hassankhanyusufzai.com/securing-rails-application/

Research - npm packages (domains)
Step 1: Firstly, packages were collected from the internet
● 2.1+ million packages (2,118,539 to be precise) packages were

identified while conducting this research.
● Total packages on the date mentioned were

2.1+ million (2,157,003) on Npmjs.org

Credits: Npmjs.com (31 Oct 2022)

Collected
packages2,118,539

Research - npm packages (domains)

Step 2: Email addresses of maintainers of ALL the packages
were identified.
● Command ~ npm view package_name_here maintainers.email

was ran 2,118,539 (2.1+ million) times in parallel.
● Obviously this was achievable by a huge processing power and

a little bit of effective scripting.
● 6,789,211 (6.7+ million) email addresses were extracted !

Collected
packages

Extract email
addresses

6,789,211 (6.7+ million)

Research - npm packages (domains)
Alternative of Step 2:
● NPM Public API could also be utilized for email extraction.

https://gist.github.com/Splint3r7/69e73ac50b809b8618d41729d8bf03e8

Research - npm packages (domains)

Step 3: Email addresses were sorted to remove the email
addresses which were repeating in the list.

Example:- if x@y.com was repeating in a list, it was removed in
the repetitive rows.

● 603,887 unique email addresses were separated or fetched out
from this sorting step !

mailto:x@y.com

Extract email
addresses

Unique
email?

Unique
emails

Bin

No

Yes

Collected
packages

603,887

Research - npm packages (domains)

Step 4: Simply, domains were separated from the email list which
was obtained from the recent step.
● Now we have 603,887 domains.

Step 5: Domains were sorted out to remove the repeating
domains as done for email addresses in Step 3.
● Now we have 132,632 domains.

Extract email
addresses

Unique
email?

Unique
emails

Extract domains

Bin

No

Yes Unique
domain?

Unique
domains

No

Yes

Collected
packages

603,887

132,632

Research - npm packages (domains)
Step 6: In this step it was identified that how many domains and
which domains out of 132,632 domains are expired.
● whois lookup was done for these domains.
● Problem we faced: There is a rate limitation problem in this so

APIs were used and parallel scenario was created.
● Expiration dates were fetched and any date before the date of

this step were considered expired.
● Number of expired domains was - 675 domains.

Shoutout @ Yevgen Goncharuk

Extract email
addresses

Unique
email?

Unique
emailsExpired

domains
Extract domains

Bin

whois for expired
domains

No

Yes Unique
domain?

Unique
domains

No

Yes

Expired?

No

Yes

Collected
packages

675

Research - npm packages (domains)

Step 7: Expired domains were attributed with the list of the email
addresses we obtained in initial steps.
● There were 8973 occurrences of the email addresses with

expired domains !

Step 8: Finally these occurrences were sorted to separate out
only the unique email addresses. - which were 845.

Expired
domains

Seperate unique
addresses

whois for expired
domains Step 1 to 5Expired?

Yes

Attribute
domains to
email list

8973 occurrences 845

Extract email
addresses

Unique
email?

Unique
emails

Expired
domains

Extract domains

Bin

Seperate
unique
addresses

whois for expired
domains

No

Yes Unique
domain?

Unique
domains

No

Yes

Expired?

No

Yes

Attribute
domains to
email list

Collected
packages

Research - npm packages (domains)
Significance?
One maintainer or email address on average does maintain 11+
packages!

If we divide total number of emails in the initial email address
list with the sorted or unique email addresses we get 11+

Research - npm packages (domains)
Significance?
• 25 email addresses were checked to

identify the number of packages being
maintained by them.

• The numbers were eye-opening.
• (Packages on right, Redacted emails on

left

Research - npm packages (domains)
● One maintainer or email address on average does maintain

11+ packages!
● 8973 email addresses occurrences of email addresses were

take-overable according to the research and 845 were unique!
(attribution of expired domains with unique email addresses)
Let’s multiply 845 with the number we got in previous slide
(11+)

Average number of packages
vulnerable

Research - npm packages (domains)

● An additional step was taken at the end of this research in
which the confirmed vulnerable packages were identified by
attributing the email addresses of expired domains with the raw
email list we got in Step 2.

● 2843 Packages were found vulnerable to this attack.

Impact!!!

2843
JS Packages

257,687
dependent

repos

● Total Packages: 2840

● Dependent Packages: 93,007

● Dependent Repos.: 257,687

● Contributors: 50,390

● Forks: 413,839
93,000

dependent
packages

413,839
Forks

50,390
Contributors

Research - npm packages (domains)
Significance ?
● Remember that web of dependencies of dependencies, Danish

displayed ?
● Packages do depend on other packages and so on. It means

even if you are using X package but if it is depending on Y
package, your company is at risk due to Y package as well !

● It’s an ocean of vulnerable dependencies actually! (due to
supply chain). (200K+)

● Millions of downloads for those vulnerable packages!

https://docs.google.com/file/d/1t9HFDSyOYXYNdJeSvaVzik7B6KYUcwXh/preview

Gap that could be filled
Data breaches

● There are hundreds of data breaches happening on the regular
basis.

● Plenty of data breaches data dump are available to public.
● What if maintainer email is present in any data dump ?
● What if the password of his other account is similar to that of

software registry ?

Ruby Gems Research Approach

2 # Rails Gem Research Stats

Total Ruby Gems
Identified: 160,953

https://rubygems.org/gems

https://gist.github.com/Splint3r7/c5aa692ea50365552932f56ab08a4e00

Rails Gem Research Approach
This time we researched openly

disclosed dependencies available
on Github and Bitbucket

Approach

Vulnerable Ruby Gem

https://github.com/Splint3r7/rails-research/blob/main/confusedgem.py credits @Splint3r7/@Stark0de

https://github.com/Splint3r7/rails-research/blob/main/confusedgem.py

Hardest Part!

Some Fun stuff!

1700 Gems Scanned

285 Gems Found to be
Vulnerable/Claimable

16% of the gems were vulnerable.

Script to detect dependency confusion

https://github.com/Splint3r7/rails-r
esearch/blob/main/rubygem_404/
Dconfusion.py

https://github.com/Splint3r7/rails-research/blob/main/rubygem_404/Dconfusion.py
https://github.com/Splint3r7/rails-research/blob/main/rubygem_404/Dconfusion.py
https://github.com/Splint3r7/rails-research/blob/main/rubygem_404/Dconfusion.py

Another tool for another problem

GemScanner
● GemScanner identifies depreciated versions of gems in your

ruby on rails project and notifies about their latest version.
● Most of the tools or integrations notifies the developers of new

gems when there are publicly disclosed vulnerabilities/cve’s in
those gems. It solves that problem by just notifying of ANY
update.

● Usage

GemScanner
● It takes out Gems from your Gemfile.lock.
● Identifies the current version

and latest version.
● Results are then saved to a

different text file.

Solutions
MFA

Github blog RubyGems blog

Solutions
For dependants

● Keep your eyes open.

● Be proactive!

● Don’t trust any code piece available on the internet.

● Use automations to keep the dependencies updated.

● Implement a Zero Trust Architecture (ZTA)

● Validate Checksums

Solutions
For dependants

● Evaluate the security postures of the third parties.

● Send and store regular third-party risk assessments.

● Perform regular code reviews.

● Make penetration testing part of your development lifecycle.

● Keep on top of security bulletins.

Solutions
For dependants

● Use dedicated tools to scan your dependency tree for security risks.

Github security alerts + Dependabot

GitLab security scanning

npm audit and retire.js for Node

bundler audit for Ruby.

OWASP dependency-check for Java and .NET

ShiftLeft + bundler-integrity

https://github.blog/2020-06-01-keep-all-your-packages-up-to-date-with-dependabot/
https://docs.gitlab.com/ee/development/integrations/secure.html
https://docs.npmjs.com/auditing-package-dependencies-for-security-vulnerabilities
https://retirejs.github.io/retire.js/
https://github.com/rubysec/bundler-audit
https://jeremylong.github.io/DependencyCheck/
https://www.shiftleft.io/how-it-works/

Solutions
SBOM

● Implement SBOM (Software Bill Of Materials).

● It includes the list of software components, version numbers, and

metadata etc.

● It could be used to track updates and vulnerabilities to stay vigilant!

● It could do integrity checks and a lot of stuff to keep you secure.

● It gives visibility!

Solutions
SBOM

● There are commercial ones, but open-source SBOM could be used

like a very well maintained CycloneDX and could be in combination

with Dependency-track

Solutions
SBOM

- CSOonline.com

Any questions?

Thank You!

