FS NGINX

15 Essential Metrics
for NGINX

December 2024

Dave McAllister

NGINX and Monitoring

One of the most popular web servers
* Reverse Proxy
» Mail Proxy
 Load Balancing
Many things impact performance of NGINX
* Increase in requests
 Higher disk 10 or network IO
« CPU or memory
* Application errors

Monitoring is essential

2 ©2024 F5

November 2024 Web Server Survey | Netcraft

https://www.netcraft.com/blog/november-2024-web-server-survey/

Collecting the data

* Access NGINX Open Source metrics via the
stub_status module

* NGINX Plus adds an API endpoint to query
specific metrics

* Plus has a lot of metrics

 Both offer the ability to scrape logs

* While your choice for visualization is wide
open, Plus does offer some built-in dashboards

3 ©2024 F5

 Add the following to your
nginx.conf file

Location /nginx_status {
stub_status;
allow 127.0.0.1;
deny all;

—

https://docs.nginx.com/nginx/admin-guide/monitoring/

THE most essential metrics to track depends on the
specific goals and needs

Aligning Metrics with Concerns

Request Metrics: Monitoring HT TP requests to the server.
Response Metrics: Monitoring server responses to client requests.
Connection Metrics: Tracking and analyzing server connections.
‘Performance Metrics: Measuring server efficiency and speed.
Resource Utilization Metrics: Monitoring CPU and memory usage.
Cache Metrics: Monitoring caching mechanisms.

SSL/TLS Metrics: Monitoring SSL/TLS performance.

Security Metrics: Enhancing server security.

5 ©2024 F5

Active Connections

This metric indicates the number of currently active connections to the server.
* Helps understand the load on your server
» Do you need to scale your resources
Do you optimize your configurations to handle traffic more efficiently

* Variable:
 $connections_active (NGINX Open Source)

 nginx_connections active (NGINX Plus)

6 ©2024 F5

Request Rate

The request rate is the number of requests handled per second.
* Helps you understand traffic patterns

* Ensures your server can handle peak loads effectively.
Sudden spikes in request rates can indicate traffic surges or potential attacks.

e Variable:

* Srequest_time

7 ©2024 F5

Response Time

Response time metrics indicate how long it takes for the server to process requests and for upstream
servers to respond.

* helps ensure that applications are performing well
* helps identify bottlenecks in your infrastructure.

» Variable:
« $request_time, Supstream_response_time (NGINX Open Source)

* nginx_http request_time, nginx_http_upstream_response _time (NGINX Plus)

8 ©2024 F5

Error Rates

» Monitors error rates (e.g., 4xx and 5xx status codes)
 Crucial for identifying issues with applications or server configurations.

 High error rates can indicate problems such as misconfigurations, application bugs, or
denial—of—service attacks.

e Variable:

 $status

9 ©2024 F5

CPU and Memory Usage

» Understand your NGINX server's resource consumption
 Can indicate the need for resource optimization or hardware upgrades.

* Tool/Variable:
« System monitoring tools (e.g., top, htop, or vmstat for NGINX Open Source),

 nginx_process_cpu and nginx_process_mem (NGINX Plus)

10 ©2024 F5

SSL Handshake Time

Ensures that secure connections are established quickly and efficiently.
» Long handshake times can indicate issues with SSL configurations
* or the need for hardware improvements.

* Variable:
 $ssl_handshake time (NGINX Open Source)

 nginx_ssl_handshake_time (NGINX Plus)

11 ©2024 F5

Throughput

Measures the total amount of data sent to clients.
« Monitoring throughput helps understand the data flow
» Ensure that the server can handle the required bandwidth.

 Variable:
« $bytes sent (NGINX Open Source),
* nginx_http_bytes sent (NGINX Plus)

12 ©2024 F5

Blocked Requests

Helps identify and respond to security threats.
« High numbers of blocked requests can indicate ongoing attacks or unauthorized access attempts.

* Variable:
« $status (NGINX Open Source),
* nginx_security blocked (NGINX Plus)

13 ©2024 F5

Cache Hit Ratio (if using NGINX as a reverse proxy)

» Measures the effectiveness of your caching strategy.
* A high cache hit ratio indicates that many requests are being served from the cache
 This reduces the load on upstream servers and improves response times.

 Variable:
« $upstream_cache_status (NGINX Open Source),

* nginx_cache_hit (NGINX Plus)

14 ©2024 F5

So What?

Scenario 1
Monitoring Active Connections — Spike

Baseline m Sudden Spike -

Active Connections 500 Active Connections 1500
Request Rate 100 r/s Request Rate 300 r/s
Response Time 200 ms Response Time 300 ms
Error Rate 1% Error Rate 1.5%
_ » Traffic surge? Marketing?

Active Connections 450—550 « DDOS Attack? Crosscheck 404 and 403
Request Rate 95—105r/s errors

Response Time 180—220 ms » Resource Limitations? Load balancing

Error Rate 0.8—1.2% reconfig or added resource?

16 ©2024 F5

Scenario 2
Monitoring Active Connections — Gradual Increase

Baseline m -

Active Connections Active Connections 500—700—900—100
Request Rate 100 r/s Request Rate 100—120—150—170 r/s
Response Time 200 ms Response Time 200—220—245—260
Error Rate 1% LS

Error Rate 1.0—-1.2—-1.3—1.6%
Normal Operation _
Active Connections 450—550 « Growth in Users? Planning and scaling
Request Rate 95—105r/s resourses
Response Time 180220 ms » Performance Degradation? Resource

saturation?

Error Rate 0.8—1.2%

 Infrastructure scaling? Vertical or Horizontal?

17 ©2024 F5

Scenario 3
Monitoring Active Connections with High Variability

Baseline __[Mean [HighVariabilty |

Active Connections 500 Active Connections 400-> 800-> 300-> 900-> 500
Request Rate 100 r/s Request Rate 90-> 150> 80— 170-> 100 r/s
Response Time 200 ms Response Time 190-> 250-> 180> 270> 200 ms
Error Rate 1% Error Rate 1% > 1.4% > 0.9% > 1.6% > 1%
_ * Intermittent Traffic? Periodic Events? Batch work?
Active Connections 450—550 « Load Balancing issues? Configuration

Request Rate 95105 r/s challenges?

Response Time 180—220 ms » Application bottlenecks? Resources outside of the

Error Rate 0.8—51.2% apps?

18 ©2024 F5

Scenario 1
Monitoring Blocked Requests — Spike

Baseline m Sudden Spike -

Active Connections 500 Active Connections

Request Rate 100 r/s Request Rate 110 r/s
Response Time 200 ms Response Time 210 ms
Error Rate 1% Error Rate 1.5%
Blocked Requests 5/m Blocked Requests 50/m
Active Connections 490-950 - Firewall or WAF configuration? Recent
Request Rate 95—105 /s changes?

Response Time 180—220 ms

» False Positives? Aggressive security rules?
Error Rate 0.8—1.2% Configuration errors?

Blocked Requests 4-6/m

19 ©2024 F5

Scenario 2
Monitoring Blocked Requests — Gradual Increase

Baseline Mean Sudden Spike -

Active Connections 500 Active Connections 500-> 550-> 600
Request Rate 100 r/s Request Rate 100-> 105-> 110 r/s
Response Time 200 ms Response Time 200-> 210~ 220 ms
Error Rate 1% Error Rate 1% > 1.2% > 1.4%
Blocked Requests 5/m Blocked Requests 5> 10-> 20
_ » Target for attackers? Up the security?

Active Connections 450—550

» Security rules adjustment? Real users or not?

MEGERIREI 2N » Resource impact? Are the blocks affecting
Response Time 180—220 ms performance?
Error Rate 0.8—1.2%

Blocked Requests 4-6/m

20 ©2024 F5

Scenario
Monitoring Blocked Requests — High Variability

Baseline Mean T

Active Connections 500 Active Connections 450-» 700-> 500-> 800> 450
Request Rate 100 r/s Request Rate 95-> 120-> 100> 130> 95r/s
Response Time 200 ms Response Time 180> 230-> 200> 250-> 180 ms
Error Rate 1% Error Rate 1%-> 1.5%—> 1.2%—> 1.8%—> 1%
Blocked Requests 5/m Blocked Requests 5>30>10>40->5
_ * Intermittent attack? Malicious actors?

Active Connections 450—550 Automated scripts?

Request Rate 95—-1051/s « Load Balancer or Proxy issues? Inconsistent
Response Time 180—220 ms load caused by blocks?

Error Rate 0.8—1.2% » Application misconfigurations? Sporadically

Blocked Requests 4-6/m exploited vulnerabilities?

21 ©2024 F5

OpenTelemetry Module for NGINX

nginxinc/nginx-otel (github.com)

« Enables NGINX to send to an Otel collector
* Fully supports W3C trace context
« Supports OTLP and gRPC protocols
 Performance
 Current community modules reduce request processing by ~50%
 Native module ~10%
« Setup and config are inline with the NGINX application configuration
* Allows dynamic control of trace parameters using cookies, tokens and/or variables

 Prebuilt packages are available, including RedHat and derivatives, Debian, Ubuntu and derivatives

22 ©2024 F5

https://github.com/nginxinc/nginx-otel

23 ©2024 F5

load_module modules/ngx_otel_module.so; Example Configuration

events {
} » Otel _exporter — specifies Otel data export parameters
http { « Endpoint — address to accept telemetry data
otel_exporter { * Interval — interval (max) between exports (5s)
endpoint localhost:4317;
} » Batch_size — max spans sent in one batch per
worker (512)
server {
listen 127.0.0.1:8080; « Batch_count — number of pending batches per
worker (4)

location / {

otel_trace on; « Otel_trace — enables or disables tracing
otel_trace_context inject;

» Can be a variable
proxy_pass http://backend;

} » Otel _trace context — propagation directives
} » Extract | inject | propagate | ignore

24 ©2024 F5 @

Prometheus and NGINX

NGINX Prometheus Exporter is an open-source exporter that translates NGINX metrics into a
format that Prometheus can scrape.

* |t works by reading the NGINX status module or the Plus API.

 https://github.com/nginxinc/nginx-prometheus-exporter

N N

25

NGINX OSS

NGINX Plus

NGINX Ingress Controller
NGINX Gateway Fabric

©2024 F5

nginx_connections_accepted
nginx_connections_active
nginx_connections_handled
nginx_connections_reading

nginx_connections_waiting
nginx_connections_writing

nginx_http_requests_total

Counter
Gauge
Counter
Gauge

Gauge
Gauge

Counter

Accepted client connections.

Active client connections.

Handled client connections.

Connections where NGINX is reading the request header.

Idle client connections.

Connections where NGINX is writing the response back to the
client.

Total http requests.

https://github.com/nginxinc/nginx-prometheus-exporter

Concluding

* Key Metrics for NGINX
* Scenarios and Analysis
« Hardware vs. Software Concerns

« Security and Performance Optimization

* [t’s not just the metrics “The most effective debugging tool is still
careful thought, coupled with judiciously

placed print statements.”

- Brian Kernighan Unix for Beginners 1979

26 ©2024 F5

Thanks!

Slides on GitHub

Linkedin: in/davemc

27 ©2024 F5

https://www.linkedin.com/in/davemc/
https://www.linkedin.com/in/davemc/
http://github.com/dwmcallister/presentations-2023
https://github.com/dwmcallister/presentations-2023
http://github.com/dwmcallister/presentations-2023
https://docs.nginx.com/
http://github.com/dwmcallister/presentations-2023
https://www.github.com/nginx
https://github.com/nginx/nginx-prometheus-exporter
https://github.com/nginxinc/nginx-otel

	Slide 1: 15 Essential Metrics for NGINX
	Slide 2: NGINX and Monitoring
	Slide 3: Collecting the data
	Slide 4
	Slide 5: Aligning Metrics with Concerns
	Slide 6: Active Connections
	Slide 7: Request Rate
	Slide 8: Response Time
	Slide 9: Error Rates
	Slide 10: CPU and Memory Usage
	Slide 11: SSL Handshake Time
	Slide 12: Throughput
	Slide 13: Blocked Requests
	Slide 14: Cache Hit Ratio (if using NGINX as a reverse proxy)
	Slide 15
	Slide 16: Scenario 1 Monitoring Active Connections → Spike
	Slide 17: Scenario 2 Monitoring Active Connections → Gradual Increase
	Slide 18: Scenario 3 Monitoring Active Connections with High Variability
	Slide 19: Scenario 1 Monitoring Blocked Requests → Spike
	Slide 20: Scenario 2 Monitoring Blocked Requests → Gradual Increase
	Slide 21: Scenario Monitoring Blocked Requests → High Variability
	Slide 22: OpenTelemetry Module for NGINX
	Slide 23
	Slide 24: Example Configuration
	Slide 25: Prometheus and NGINX
	Slide 26: Concluding
	Slide 27: Thanks!
	Slide 28

