
15 Essential Metrics
for NGINX
December 2024

Dave McAllister

©2024 F52

NGINX and Monitoring

November 2024 Web Server Survey | Netcraft

One of the most popular web servers

• Reverse Proxy

• Mail Proxy

• Load Balancing

Many things impact performance of NGINX

• Increase in requests

• Higher disk IO or network IO

• CPU or memory

• Application errors

Monitoring is essential

https://www.netcraft.com/blog/november-2024-web-server-survey/

©2024 F53

Collecting the data

• Access NGINX Open Source metrics via the
stub_status module

• NGINX Plus adds an API endpoint to query
specific metrics

• Plus has a lot of metrics

• Both offer the ability to scrape logs

• While your choice for visualization is wide
open, Plus does offer some built-in dashboards

• Add the following to your
nginx.conf file

Location /nginx_status {

 stub_status;

 allow 127.0.0.1;

 deny all;

}

https://docs.nginx.com/nginx/admin-guide/monitoring/

©2024 F54

THE most essential metrics to track depends on the
specific goals and needs

©2024 F55

Request Metrics: Monitoring HTTP requests to the server.

Response Metrics: Monitoring server responses to client requests.

Connection Metrics: Tracking and analyzing server connections.

•Performance Metrics: Measuring server efficiency and speed.

Resource Utilization Metrics: Monitoring CPU and memory usage.

Cache Metrics: Monitoring caching mechanisms.

SSL/TLS Metrics: Monitoring SSL/TLS performance.

Security Metrics: Enhancing server security.

Aligning Metrics with Concerns

©2024 F56

This metric indicates the number of currently active connections to the server.

• Helps understand the load on your server

• Do you need to scale your resources

• Do you optimize your configurations to handle traffic more efficiently

• Variable:

• $connections_active (NGINX Open Source)

• nginx_connections_active (NGINX Plus)

•

Active Connections

©2024 F57

The request rate is the number of requests handled per second.

• Helps you understand traffic patterns

• Ensures your server can handle peak loads effectively.

Sudden spikes in request rates can indicate traffic surges or potential attacks.

• Variable:

• $request_time

Request Rate

©2024 F58

Response time metrics indicate how long it takes for the server to process requests and for upstream
servers to respond.

• helps ensure that applications are performing well

• helps identify bottlenecks in your infrastructure.

• Variable:

• $request_time, $upstream_response_time (NGINX Open Source)

• nginx_http_request_time, nginx_http_upstream_response_time (NGINX Plus)

Response Time

©2024 F59

• Monitors error rates (e.g., 4xx and 5xx status codes)

• Crucial for identifying issues with applications or server configurations.

• High error rates can indicate problems such as misconfigurations, application bugs, or
denial→of→service attacks.

• Variable:

• $status

Error Rates

©2024 F510

• Understand your NGINX server's resource consumption

• Can indicate the need for resource optimization or hardware upgrades.

• Tool/Variable:

• System monitoring tools (e.g., top, htop, or vmstat for NGINX Open Source),

• nginx_process_cpu and nginx_process_mem (NGINX Plus)

CPU and Memory Usage

©2024 F511

Ensures that secure connections are established quickly and efficiently.

• Long handshake times can indicate issues with SSL configurations

• or the need for hardware improvements.

• Variable:

• $ssl_handshake_time (NGINX Open Source)

• nginx_ssl_handshake_time (NGINX Plus)

SSL Handshake Time

©2024 F512

Measures the total amount of data sent to clients.

• Monitoring throughput helps understand the data flow

• Ensure that the server can handle the required bandwidth.

• Variable:

• $bytes_sent (NGINX Open Source),

• nginx_http_bytes_sent (NGINX Plus)

Throughput

©2024 F513

Helps identify and respond to security threats.

• High numbers of blocked requests can indicate ongoing attacks or unauthorized access attempts.

• Variable:

• $status (NGINX Open Source),

• nginx_security_blocked (NGINX Plus)

Blocked Requests

©2024 F514

• Measures the effectiveness of your caching strategy.

• A high cache hit ratio indicates that many requests are being served from the cache

• This reduces the load on upstream servers and improves response times.

• Variable:

• $upstream_cache_status (NGINX Open Source),

• nginx_cache_hit (NGINX Plus)

Cache Hit Ratio (if using NGINX as a reverse proxy)

©2024 F515

So What?

©2024 F516

Scenario 1
Monitoring Active Connections → Spike

Baseline Mean
Active Connections 500
Request Rate 100 r/s
Response Time 200 ms
Error Rate 1%

Normal Operation IQR
Active Connections 450→550
Request Rate 95→105 r/s
Response Time 180→220 ms
Error Rate 0.8→1.2%

Sudden Spike
Active Connections 1500
Request Rate 300 r/s
Response Time 300 ms
Error Rate 1.5%

• Traffic surge? Marketing?
• DDOS Attack? Crosscheck 404 and 403

errors

• Resource Limitations? Load balancing
reconfig or added resource?

©2024 F517

Scenario 2
Monitoring Active Connections → Gradual Increase

Baseline Mean
Active Connections 500
Request Rate 100 r/s
Response Time 200 ms
Error Rate 1%

Normal Operation IQR
Active Connections 450→550
Request Rate 95→105 r/s
Response Time 180→220 ms
Error Rate 0.8→1.2%

Active Connections 500→700→900→100
Request Rate 100→120→150→170 r/s
Response Time 200→220→245→260

ms
Error Rate 1.0→1.2→1.3→1.6%

• Growth in Users? Planning and scaling
resourses

• Performance Degradation? Resource
saturation?

• Infrastructure scaling? Vertical or Horizontal?

©2024 F518

Scenario 3
Monitoring Active Connections with High Variability

Baseline Mean
Active Connections 500
Request Rate 100 r/s
Response Time 200 ms
Error Rate 1%

Normal Operation IQR
Active Connections 450→550
Request Rate 95→105 r/s
Response Time 180→220 ms
Error Rate 0.8→1.2%

High Variability
Active Connections 400→ 800→ 300→ 900→ 500

Request Rate 90→ 150→ 80→ 170→ 100 r/s
Response Time 190→ 250→ 180→ 270→ 200 ms
Error Rate 1% → 1.4% → 0.9% → 1.6% → 1%

• Intermittent Traffic? Periodic Events? Batch work?
• Load Balancing issues? Configuration

challenges?

• Application bottlenecks? Resources outside of the
apps?

©2024 F519

Scenario 1
Monitoring Blocked Requests → Spike

Baseline Mean
Active Connections 500
Request Rate 100 r/s
Response Time 200 ms
Error Rate 1%
Blocked Requests 5/m

Normal Operation IQR
Active Connections 450→550
Request Rate 95→105 r/s
Response Time 180→220 ms
Error Rate 0.8→1.2%
Blocked Requests 4-6/m

Sudden Spike
Active Connections 600
Request Rate 110 r/s
Response Time 210 ms
Error Rate 1.5%
Blocked Requests 50/m

• Security threat?
• Firewall or WAF configuration? Recent

changes?

• False Positives? Aggressive security rules?
Configuration errors?

©2024 F520

Scenario 2
Monitoring Blocked Requests → Gradual Increase

Baseline Mean
Active Connections 500
Request Rate 100 r/s
Response Time 200 ms
Error Rate 1%
Blocked Requests 5/m

Normal Operation IQR
Active Connections 450→550
Request Rate 95→105 r/s
Response Time 180→220 ms
Error Rate 0.8→1.2%
Blocked Requests 4-6/m

Sudden Spike
Active Connections 500→ 550→ 600

Request Rate 100→ 105→ 110 r/s
Response Time 200→ 210→ 220 ms
Error Rate 1% → 1.2% → 1.4%

Blocked Requests 5→ 10→ 20

• Target for attackers? Up the security?
• Security rules adjustment? Real users or not?

• Resource impact? Are the blocks affecting
performance?

©2024 F521

Scenario
Monitoring Blocked Requests → High Variability

Baseline Mean
Active Connections 500
Request Rate 100 r/s
Response Time 200 ms
Error Rate 1%
Blocked Requests 5/m

Normal Operation IQR
Active Connections 450→550
Request Rate 95→105 r/s
Response Time 180→220 ms
Error Rate 0.8→1.2%
Blocked Requests 4-6/m

Sudden Spike
Active Connections 450→ 700→ 500→ 800→ 450

Request Rate 95→ 120→ 100→ 130→ 95 r/s
Response Time 180→ 230→ 200→ 250→ 180 ms
Error Rate 1%→ 1.5%→ 1.2%→ 1.8%→ 1%

Blocked Requests 5 → 30 → 10 → 40 → 5

• Intermittent attack? Malicious actors?
Automated scripts?

• Load Balancer or Proxy issues? Inconsistent
load caused by blocks?

• Application misconfigurations? Sporadically
exploited vulnerabilities?

©2024 F522

• Enables NGINX to send to an Otel collector

• Fully supports W3C trace context

• Supports OTLP and gRPC protocols

• Performance

• Current community modules reduce request processing by ~50%

• Native module ~10%

• Setup and config are inline with the NGINX application configuration

• Allows dynamic control of trace parameters using cookies, tokens and/or variables

• Prebuilt packages are available, including RedHat and derivatives, Debian, Ubuntu and derivatives

OpenTelemetry Module for NGINX
nginxinc/nginx-otel (github.com)

https://github.com/nginxinc/nginx-otel

©2024 F523

©2024 F524

• Otel_exporter – specifies Otel data export parameters

• Endpoint – address to accept telemetry data

• Interval – interval (max) between exports (5s)

• Batch_size – max spans sent in one batch per
worker (512)

• Batch_count – number of pending batches per
worker (4)

• Otel_trace – enables or disables tracing

• Can be a variable

• Otel_trace_context – propagation directives

• Extract | inject | propagate | ignore

Example Configuration

©2024 F525

NGINX Prometheus Exporter is an open-source exporter that translates NGINX metrics into a
format that Prometheus can scrape.

• It works by reading the NGINX status module or the Plus API.

• https://github.com/nginxinc/nginx-prometheus-exporter

Prometheus and NGINX

Name Type Description

nginx_connections_accepted Counter Accepted client connections.

nginx_connections_active Gauge Active client connections.

nginx_connections_handled Counter Handled client connections.

nginx_connections_reading Gauge Connections where NGINX is reading the request header.

nginx_connections_waiting Gauge Idle client connections.

nginx_connections_writing Gauge Connections where NGINX is writing the response back to the
client.

nginx_http_requests_total Counter Total http requests.

• NGINX OSS
• NGINX Plus
• NGINX Ingress Controller
• NGINX Gateway Fabric

https://github.com/nginxinc/nginx-prometheus-exporter

©2024 F526

• Key Metrics for NGINX

• Scenarios and Analysis

• Hardware vs. Software Concerns

• Security and Performance Optimization

• It’s not just the metrics

Concluding

“The most effective debugging tool is still

careful thought, coupled with judiciously
placed print statements.”

- Brian Kernighan Unix for Beginners 1979

©2024 F527

Thanks!

Linkedin: in/davemc

Linkedin: in/davemc

Slides on GitHub

Slides on GitHub

Docs

Docs

Repos

Repos

NGINX Prometheus Exporter

OTel Module for NGINX

https://www.linkedin.com/in/davemc/
https://www.linkedin.com/in/davemc/
http://github.com/dwmcallister/presentations-2023
https://github.com/dwmcallister/presentations-2023
http://github.com/dwmcallister/presentations-2023
https://docs.nginx.com/
http://github.com/dwmcallister/presentations-2023
https://www.github.com/nginx
https://github.com/nginx/nginx-prometheus-exporter
https://github.com/nginxinc/nginx-otel

	Slide 1: 15 Essential Metrics for NGINX
	Slide 2: NGINX and Monitoring
	Slide 3: Collecting the data
	Slide 4
	Slide 5: Aligning Metrics with Concerns
	Slide 6: Active Connections
	Slide 7: Request Rate
	Slide 8: Response Time
	Slide 9: Error Rates
	Slide 10: CPU and Memory Usage
	Slide 11: SSL Handshake Time
	Slide 12: Throughput
	Slide 13: Blocked Requests
	Slide 14: Cache Hit Ratio (if using NGINX as a reverse proxy)
	Slide 15
	Slide 16: Scenario 1 Monitoring Active Connections → Spike
	Slide 17: Scenario 2 Monitoring Active Connections → Gradual Increase
	Slide 18: Scenario 3 Monitoring Active Connections with High Variability
	Slide 19: Scenario 1 Monitoring Blocked Requests → Spike
	Slide 20: Scenario 2 Monitoring Blocked Requests → Gradual Increase
	Slide 21: Scenario Monitoring Blocked Requests → High Variability
	Slide 22: OpenTelemetry Module for NGINX
	Slide 23
	Slide 24: Example Configuration
	Slide 25: Prometheus and NGINX
	Slide 26: Concluding
	Slide 27: Thanks!
	Slide 28

