How to Avoid
Becoming an

Agile Victim

David Argent

Salesforce

Agenda

Introduction

A (Very) Brief Review of Agile
How to Fail

Think Before You Code

Balancing Tactics and Strategy
Code Is Not Your Only Deliverable

Summary

I d . * Who am I?
I I tro UCtIO I I I’m a veteran of Microsoft and Amazon, with more than two decades of experience in online service

delivery, primarily as an SRE and TPM.I"'m also a battle-scarred veteran of Agile gone wrong,and

I’'m eager to help others avoid being victimized.

* A BriefWar Story —The Control Plane That Didn’t

A (Very) Briet
Review of Agile

What'’s All the Fuss About Anyway?

What Agile
Isn’t

A Framework

A Methodology

A Process

A Set of Rules

Prescriptive

Working Software over Comprehensive Documentation

‘ ~ hat Aglle IS * The Built Software stands in as your “spec” rather than trying to document

every little nuance
Individuals and interactions over processes and tools
* Self-defined teams with frequent face-to-face communication
Customer collaboration over contract negotiation
» Customer needs can change, and we need to flexibly adjust to that reality
Responding to change over following a plan

* Iterative — build small chunks of deliverable functionality at a time
 Learn from each iteration and change course

But | Just Said
Responding to
Change over
Following a Plan...

How 'To Fail

Just because you have priorities in your
principles doesn’t mean other elements can
be safely ignored

How do you know if your productis successful?

* If you can’t measureit, how can you determine success!?

What is going to make people use your product!?

* Features, reliability, performance,security, privacy, etc.

Why would people NOT use your product?

[
I | allure 1()1 * lLack of: features, reliability, performance,security, privacy, etc.

NO qu‘lnltlon OJDSuccess * The very same things which can make people use your product,done badly, can

convince them not to use it.

What would cause you to stop developing this product!?
* Too costly to deliver the product
* Too difficult to maintain

* Too small a user base

Failure 201

Didn’t Plan for Success

* Functionality is only one part of a successful product

* Few incremental features exist in 2 vacuum

Complex interplay between features,and they need to play nicely together

Overarching requirements to meet your definition of success

* “Invisible” items needed to deliver functionality and delight your users

Code testing (unit, functional, U, etc.)

Data integrity, availability, and security

Availability / reliability

Limited downtime for maintenance or deployment of new code
Performance/ scalability

Monitoring

Incident Management/ Documentation

Disaster recovery/ georedundancy

THINGSWILL GOWRONG

THERE IS NO SUCH THING AS A SAFE CHANGE

* Diagnose failures quickly,automate responses to bad deployments

Everything must accommodate failure

This especially includes failures you have limited control over:

Failure 50l P

* Network providers
Didn’t Plan for Murphy p

* Hardware
» Datacenter Infrastructure (power,cooling, etc.)

e BadActors

* Not enough to plan for failure,but how to recover from a complete
outage

e Coming up cold is often not the same as recovering from a partial outage

* Determining responses to huge failures must happen before,not during an outage

Think Belore
You Code

The cheapest place to make changes is
when you're designing and haven’t yet
written a line of code

The only truly reliable thing in online services is that they fail — it’s like
death and taxes rolled up into one

Understand and define what is ‘acceptable’
* Don’t design for greater reliability than needed
e Don’t design for greater performance than needed

* Both of the above add large costs and limited benefit to your customers

Design for fast recovery from failures

Design 101

Anticipate Failures * Monitor and measure

e Automate responses where possible

* Include being‘hard down 100%’ in your recovery scenarios

Build degraded modes of operation for when you or dependencies falil

» Supportsome user scenarios even in the absence of full functionality

Multi-layered security

* Anythingis a potential single point of failure — make it harder on bad actors than that

The most dangerous time for an online service is when it’s
embarrassingly successful

Architect for hyper-scale — You might need it!

Avoid monolithic structures

* Monoliths often cannot scale important subsystems independently,forcing you to overscale to
compensate

[}
D e Slg [l 2 Ol * Microservices and similar architectures allow components to scale more efficiently

Antl’cipate Succeess Avoid processes that scale linearly with people

* For example,if customer onboarding requires manual steps, this can become a bottleneck if
you are successful, since while your service may be able to scale, your staff may not

Protect your service from excess traffic
* Servingup some of your traffic is >>>> serving up none of it
* You can’t control client behavior or bad actors throwing excessive load at you

* Identify your ‘high value’ traffic and service that when resourcesare strained

Nobody can accurately tell the future

* Leave as many possible futures open as is reasonable

Design for flexibility and possibility
* You don’talways know what the customer will want or need next year

* Design with APIs rather than direct calls, enabling you to change underlying business logic
without rewriting every component that needs it

Zero-downtime software upgrades

Design 501
g * Not all services will truly need this, but designing from the perspective that it must be

A nthlpClte Change possible safeguards your future

Learn from experience and let it inform you

* Change includes changing direction or plan in response to new information

Couple loosely

* Loosely coupled systems are generally easier to change and generally more resilient

Balancing
Tactics and
Strategy

How to concentrate on short-term
deliverables while not sacrificing long-term
vision

e Cold feet are an asset

¢ Committing to a path and discovering you’re wrong is expensive

* Allow yourself to learn more about your problem space before making non-critical decisions
you can’t easily walk back

* LeverageAgile principles and learn from experience

TaCtiCS 101 * Get the right people in the design process

. * Coders are very good at writing code
Delay non-Critical
Decisions as L.ong as

POSSlble * SREs are usually more familiar with the intricacies of running online services in the real world

* Architects are good at designing services

* Product Owners usually are ‘the voice of the customer’ and help define the requirements

Tactics 201

Tryto Get the Critical
Architecture Right the
First Time

* Architecture decisions are often very expensive or nearly impossible
to fix later

* Do your research,understand the requirements,plan these out first

* Everythingelse will usually align around the expensive architectural decisions with greater
flexibility

* Get scalability,availability,performance,security,and data integrity
requirements nailed down

* Without at least most of these, you don’t have a service

* Design initially to your non-negotiable requirements

* Adaptfeatures and customer scenarios to your architecture

* Ifit’s obvious your architecture can’t supportyour features and customer scenarios
reasonably,redesign the architecture until it can

Two-way doors are decisions which can be easily reverted

One-way doors, put you on a set path with no easy way to revert

Sometimes, you need to take a step back to take three steps forward

* This is ok! You'’re leveraging one of the strengths of Agile, where you learn from each iteration

* Try to make your decisions reversable,so that taking a step back is easy and you aren’t
blocked from doing so

Strategy 101

Two-way Doors flexibly

* Oddsare, you'’re going to wake up smarter one day than you are today

As much as you need to design for flexibility,you also need to plan

* Listen to and be able to implementthe ideas of that ‘smarter you’

* Scrap and reworkas needed without embarrassment— you want to get to the right endpoint,
sometimes the path to get thereis a little crooked

Strategy 201

How Much Planning Is
Fnough?

Planning is necessary,but this isn’t waterfall, folks!

Don’t plan every little thing — allow yourself to learn from experience
as you go, what the ‘right’ things to do are

* You will probably change significant elements over time based on what you learn. Good.

Understand what you need for long-term success,and don’t
compromise on delivering it

Know the shape of what you want to deliver; how you’re going to
deliver it,and how you’re going to support it during its lifetime

Realize that you’re probably wrong about ALL THESE THINGS and be
prepared to adapt to real world circumstances

20

Code Is Not
Your Only
Deliverable

Online services are more than just code,

they include data, monitoring, testing,
documentation, redundancy, availability,
performance, budgeting...

21

e Service Code

* Not Service Code

* Monitoring/ alerting / incident response
* Internal documentation / runbooks
* External-facing documentation

* Network

Deliverables 101 cecurts

Servl.ce COd@]S th@ EaSy e Testing & Test Framework
Part

* Deployment tools

« SLA/OLA/SLO

* Administrative Tools
* Reporting

Notice how there are so many more things which aren’t service code,
necessary to running an online service well?

22

Deliverables 201

Integrating non-Code
Deliverables into
Planning and FExecution

* Add non-Code items to your backlog

* Understand what you need to successfully release

What is a release blocker?

What is my non-code collateral?

* Create a release sprint

Some things you only need to do if you're releasing — this is much of your non-code collateral

Processes often need to change around major releases, since a much larger percentage of
time is spent doing bug fix work from newly discovered bugs not in the backlog

Allocate time differently

Ilgnore non-blocking code items from the backlog, concentrate on bug fixes and non-
code deliverables

Test, test, test — this includes game days and breaking non-Production to ensure your
runbooks, monitoring,and incident response are solid

Test some more,doing deployments so you know what to expect before and after

Train your operational staff and vet the documentation

23

Even with the principles of Agile, you need to do some planning to

Summary ensure the long-term success of your product.

Architectural defects and deficits in redundancy,availability, monitoring,
and performance can destroy trust in your product weeks,months,or
years from now and can be difficult/expensive to fix.

Thank You

David Argent

(Personal)

(Work)

mailto:dargent@gmail.com
mailto:dargent@salesforce.com

	Slide 1: How to Avoid Becoming an Agile Victim
	Slide 2: Agenda
	Slide 3: Introduction
	Slide 4: A (Very) Brief Review of Agile
	Slide 5: What Agile Isn’t
	Slide 6: What Agile Is
	Slide 7: But I Just Said Responding to Change over Following a Plan…
	Slide 8: How To Fail
	Slide 9: Failure 101 No Definition of Success
	Slide 10: Failure 201 Didn’t Plan for Success
	Slide 11: Failure 301 Didn’t Plan for Murphy
	Slide 12: Think Before You Code
	Slide 13: Design 101 Anticipate Failures
	Slide 14: Design 201 Anticipate Success
	Slide 15: Design 301 Anticipate Change
	Slide 16: Balancing Tactics and Strategy
	Slide 17: Tactics 101 Delay non-Critical Decisions as Long as Possible
	Slide 18: Tactics 201 Try to Get the Critical Architecture Right the First Time
	Slide 19: Strategy 101 Two-way Doors
	Slide 20: Strategy 201 How Much Planning Is Enough?
	Slide 21: Code Is Not Your Only Deliverable
	Slide 22: Deliverables 101 Service code Is the Easy Part
	Slide 23: Deliverables 201 Integrating non-Code Deliverables into Planning and Execution
	Slide 24: Summary
	Slide 25: Thank You

