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Introduction

01 ● The Problem
● Our Solution



➢ The Need for Faster Incident Response

➢ Democratizing Monitoring Data Access

➢ The PromQL Learning Curve 

➢ Inspired by "Chat with Your Data"

Understanding the Problem & Motivation



➢ Ask Questions in Natural Language

➢ PromQL query generated from Natural Language

➢ Result fetched from prometheus using generated PromQL Query

➢ Result presented back in Natural Language

The Solution: Natural Language to PromQL



Approach

02 ● Architecture Overview
● Key Components Review



Architecture Overview



Notation

Typically written in the format:

<metric name>{<label name>=<label value>, ...}

For example:

api_http_requests_total{method="POST", handler="/messages"}

/api/v1/metadataPrometheus



LLM TOOLs



PromChat

03 ● Node Exporter
● Custom Exporter



Sample metrics and Queries 

rate(node_cpu_seconds_total{
mode="system"}[1m])

node_filesystem_avail_bytes

rate(node_network_receive_bytes_total[1m])

The average amount of CPU time spent in 
system mode, per second, over the last minute 
(in seconds)

The filesystem space available to non-root 
users (in bytes)

The average network traffic received, per 
second, over the last minute (in bytes)

NODE EXPORTER 11





CUSTOM EXPORTER





INFO:main:User query: Is today an holiday?

INFO:agent.agent:Generated PromQL Query: demo_is_holiday

INFO:agent.agent:Prometheus Result: [{"metric": {"__name__": "demo_is_holiday", 

"instance": "demo-service-2:10002", "job": "demo"}, "value": [1744152905.074, "1"]}]

INFO:main:Agent response: Yes, `demo-service-2` reports that today is a holiday

Behind the Scene



INFO:main:User query: how many items have been shipped today?

INFO:agent.agent:Generated PromQL Query: increase(demo_items_shipped_total[1d])

INFO:agent.agent:Prometheus Result: [{"metric": {"instance": "demo-service-0:10000", 

"job": "demo"}, "value": [1744152970.506, "455360.05556520226"]}, {"metric": {"instance": 

"demo-service-1:10001", "job": "demo"}, "value": [1744152970.506, "453045.6537593332"]}, 

{"metric": {"instance": "demo-service-2:10002", "job": "demo"}, "value": [1744152970.506, 

"453865.79614516406"]}]

INFO:main:Agent response: Approximately 1,362,271 items have been shipped today

Behind the Scene



INFO:main:User query: Are requests to the demo api taking longer than usual?

INFO:agent.agent:Generated PromQL Query: 

increase(demo_api_request_duration_seconds_sum[5m]) > 

increase(demo_api_request_duration_seconds_count[5m]) * 

avg_over_time(demo_api_request_duration_seconds_bucket[5m])

INFO:agent.agent:Prometheus Result: []

INFO:main:Agent response: No data was found

Behind the Scene









INFO:main:User query: Are requests to the demo api taking longer than usual?

INFO:agent.agent:Generated PromQL Query: histogram_quantile(0.99, 

rate(demo_api_request_duration_seconds_bucket[5m]))

INFO:agent.agent:Prometheus Result: [{"metric": {"instance": "demo-service-2:10002", "job": "demo", "method": 

"GET", "path": "/api/nonexistent", "status": "404"}, "value": [1744153995.69, "0.00009900000000000001"]}, 

{"metric": {"instance": "demo-service-1:10001", "job": "demo", "method": "POST", "path": "/api/bar", "status": 

"500"}, "value": [1744153995.69, "0.21946694418525692"]}, … ]

INFO:main:Agent response: The 99th percentile of request durations for the `/api/bar` path, especially POST 

requests resulting in 500 errors, is significantly higher (around 0.2 seconds) compared to other paths like 

`/api/foo` or `/api/nonexistent`, which are often below 0.05 seconds. This suggests that requests to `/api/bar` are 

taking longer than requests to other API paths.

Behind the Scene



Result

04 ● Lessons
● Limitations
● Future Plans
● Contributing



RESULT SUMMARY
Lessons from implementing the PoC

● Support more complex queries
● Support more metrics sources
● Learn from user interactions

FUTURE IMPROVEMENTS

● Source code is available on github at 
https://github.com/neslahq/promchat

● Issues, PRs are welcomed.
● Live demo available at: 

https://promchat.nesla.co

CONTRIBUTING

● LLMs are capable of writing correct PromQL 
without the need for additional training or 
fine tuning

● One short prompting to avoid response 
validation 

● Thinking models write better PromQL

LESSONS

● Labels missing in metadata documentation
● Inconsistency on the generated queries

LIMITATIONS

https://github.com/neslahq/promchat
https://promchat.nesla.co


THANK YOU

 David Asamu

Mail: hello@davidasamu.com

Blog: https://doa.sh

X: @atechbruv

LinkedIn: 
https://www.linkedin.com/in/david-as
amu/
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