
AI in SRE
Unlocking Prometheus 
Insights with Natural Language

David Asamu
Conf42 SRE2025



OUTLINE

01 INTRODUCTION
The Problem
Our Solution

02 APPROACH
Architecture
Key Components

03 PROMCHAT
With Node Exporter 
With Custom Exporter

04 RESULT
Lessons
Limitations
Future Plans
Contributing

05 CLOSING
Contact
Thank You



Introduction

01 ● The Problem
● Our Solution



➢ The Need for Faster Incident Response

➢ Democratizing Monitoring Data Access

➢ The PromQL Learning Curve 

➢ Inspired by "Chat with Your Data"

Understanding the Problem & Motivation



➢ Ask Questions in Natural Language

➢ PromQL query generated from Natural Language

➢ Result fetched from prometheus using generated PromQL Query

➢ Result presented back in Natural Language

The Solution: Natural Language to PromQL



Approach

02 ● Architecture Overview
● Key Components Review



Architecture Overview



Notation

Typically written in the format:

<metric name>{<label name>=<label value>, ...}

For example:

api_http_requests_total{method="POST", handler="/messages"}

/api/v1/metadataPrometheus



LLM TOOLs



PromChat

03 ● Node Exporter
● Custom Exporter



Sample metrics and Queries 

rate(node_cpu_seconds_total{
mode="system"}[1m])

node_filesystem_avail_bytes

rate(node_network_receive_bytes_total[1m])

The average amount of CPU time spent in 
system mode, per second, over the last minute 
(in seconds)

The filesystem space available to non-root 
users (in bytes)

The average network traffic received, per 
second, over the last minute (in bytes)

NODE EXPORTER 11





CUSTOM EXPORTER





INFO:main:User query: Is today an holiday?

INFO:agent.agent:Generated PromQL Query: demo_is_holiday

INFO:agent.agent:Prometheus Result: [{"metric": {"__name__": "demo_is_holiday", 

"instance": "demo-service-2:10002", "job": "demo"}, "value": [1744152905.074, "1"]}]

INFO:main:Agent response: Yes, `demo-service-2` reports that today is a holiday

Behind the Scene



INFO:main:User query: how many items have been shipped today?

INFO:agent.agent:Generated PromQL Query: increase(demo_items_shipped_total[1d])

INFO:agent.agent:Prometheus Result: [{"metric": {"instance": "demo-service-0:10000", 

"job": "demo"}, "value": [1744152970.506, "455360.05556520226"]}, {"metric": {"instance": 

"demo-service-1:10001", "job": "demo"}, "value": [1744152970.506, "453045.6537593332"]}, 

{"metric": {"instance": "demo-service-2:10002", "job": "demo"}, "value": [1744152970.506, 

"453865.79614516406"]}]

INFO:main:Agent response: Approximately 1,362,271 items have been shipped today

Behind the Scene



INFO:main:User query: Are requests to the demo api taking longer than usual?

INFO:agent.agent:Generated PromQL Query: 

increase(demo_api_request_duration_seconds_sum[5m]) > 

increase(demo_api_request_duration_seconds_count[5m]) * 

avg_over_time(demo_api_request_duration_seconds_bucket[5m])

INFO:agent.agent:Prometheus Result: []

INFO:main:Agent response: No data was found

Behind the Scene









INFO:main:User query: Are requests to the demo api taking longer than usual?

INFO:agent.agent:Generated PromQL Query: histogram_quantile(0.99, 

rate(demo_api_request_duration_seconds_bucket[5m]))

INFO:agent.agent:Prometheus Result: [{"metric": {"instance": "demo-service-2:10002", "job": "demo", "method": 

"GET", "path": "/api/nonexistent", "status": "404"}, "value": [1744153995.69, "0.00009900000000000001"]}, 

{"metric": {"instance": "demo-service-1:10001", "job": "demo", "method": "POST", "path": "/api/bar", "status": 

"500"}, "value": [1744153995.69, "0.21946694418525692"]}, … ]

INFO:main:Agent response: The 99th percentile of request durations for the `/api/bar` path, especially POST 

requests resulting in 500 errors, is significantly higher (around 0.2 seconds) compared to other paths like 

`/api/foo` or `/api/nonexistent`, which are often below 0.05 seconds. This suggests that requests to `/api/bar` are 

taking longer than requests to other API paths.

Behind the Scene



Result

04 ● Lessons
● Limitations
● Future Plans
● Contributing



RESULT SUMMARY
Lessons from implementing the PoC

● Support more complex queries
● Support more metrics sources
● Learn from user interactions

FUTURE IMPROVEMENTS

● Source code is available on github at 
https://github.com/neslahq/promchat

● Issues, PRs are welcomed.
● Live demo available at: 

https://promchat.nesla.co

CONTRIBUTING

● LLMs are capable of writing correct PromQL 
without the need for additional training or 
fine tuning

● One short prompting to avoid response 
validation 

● Thinking models write better PromQL

LESSONS

● Labels missing in metadata documentation
● Inconsistency on the generated queries

LIMITATIONS

https://github.com/neslahq/promchat
https://promchat.nesla.co


THANK YOU

 David Asamu

Mail: hello@davidasamu.com

Blog: https://doa.sh

X: @atechbruv

LinkedIn: 
https://www.linkedin.com/in/david-as
amu/

mailto:hello@davidasamu.com
https://doa.sh
https://www.linkedin.com/in/david-asamu/
https://www.linkedin.com/in/david-asamu/

