
Build ML Enhanced
Event Streaming
Apps with Java

● Over two decades of experience in software development,
big data, and event streaming.

● Committer on the Apache Pulsar project

● Published author

David Kjerrumgaard
Developer Advocate

● Author of Pulsar In Action.

● Co-Author of Practical Hive

David Kjerrumgaard
Author

https://streamnative.io/download/manning-ebook-apache-pulsar-in-action

Agenda

• Why Apache Pulsar for EDA Microservices?

• Building Event-Driven Microservices with Pulsar Functions

• Enhancing Event-Driven Microservice with ML

Event-Driven
Microservices

What is an Event-Driven Architecture?
• An event-driven architecture (EDA)

uses events to communicate between
decoupled services.

• An event is a change in state, or an
update, like an item being placed in a
shopping cart on an e-commerce
website.

• In an EDA services are loosely coupled
and communicate asynchronously,
typically via pub/sub.

Event-Driven Microservices
• Microservices that are designed

to communicate with one
another over a message bus are
considered event-driven.

Event-Driven
Microservices NEED

an Event Bus

What is Apache
Pulsar?

Cloud-Native Messaging and
Event-Streaming Platform

Pulsar Pub/Sub Model

Producer Consumer

Publisher sends data and
doesn't know about the

subscribers or their status.
All interactions go through

Pulsar, and it handles all
communication.

Subscriber receives data from
publisher and never directly

interacts with it.

Topic

Topic

Topics

Tenants
(Compliance)

Tenants
(Data Services)

Namespace
(Microservices)

Topic-1
(Cust Auth)

Topic-1
(Location Resolution)

Topic-2
(Demographics)

Topic-1
(Budgeted Spend)

Topic-1
(Acct History)

Topic-1
(Risk Detection)

Namespace
(ETL)

Namespace
(Campaigns)

Namespace
(ETL)

Tenants
(Marketing)

Namespace
(Risk Assessment)

Pulsar Instance

Pulsar Cluster

● “Bookies”
● Stores messages and cursors
● Messages are grouped in

segments/ledgers
● A group of bookies form an

“ensemble” to store a ledger

● “Brokers”
● Handles message routing and

connections
● Stateless, but with caches
● Automatic load-balancing
● Topics are composed of

multiple segments

● Stores metadata for both
Pulsar and BookKeeper

● Service discovery

Store
Messages

Metadata & Service
Discovery

Metadata & Service
Discovery

Physical Architecture of a Pulsar Cluster

Metadata Storage

What are Pulsar
Functions?

What are Pulsar Functions?
● Pulsar Functions are a serverless computing framework that runs on top of

Pulsar. You can think of them as like FaaS (Functions as a Service) offerings on
cloud providers, e.g., AWS Lambdas.

● Pulsar functions take care of the boilerplate code, so you don’t have to create
producers and consumers. You can focus on the business problem instead of
the code.

● Pulsar Functions provide a way to run individual units of code that respond to
the publication of messages on one or more topics.

● Consume messages from one or
more Pulsar topics.

● Apply user-supplied processing
logic to each message.

● Publish the results of the
computation to another topic.

● Support multiple programming
languages (Java, Python, Go)

● Can leverage 3rd-party libraries to
support the execution of ML models.

Pulsar Functions Programming Model

Why Pulsar Functions?
Functions are the computing infrastructure of the Pulsar messaging system and can
help ease stream processing complexity by providing:

● Simplified deployment and operations - you can create a data pipeline without
deploying a separate Stream Processing Engine (SPE), such as Apache Storm,
Apache Heron, or Apache Flink.

● Serverless computing (when you use Kubernetes runtime)

● Maximized developer productivity (both language-native interfaces and SDKs
for Java/Python/Go).

When to Use Pulsar Functions
Pulsar Functions are designed to perform “lightweight” stream processing. They
excel at basic use cases that do not require the complexity of a full stream
processing engine.

● Event Driven Microservices

● Simple per-message transformations for normalization, cleanup, or enrichment.

● “Chained” sequences of transformations on data in a single Topic.

Developing Pulsar
Functions

Pulsar Functions SDK
Apache Pulsar also provides a software development kit (SDK) that you can use to
write Pulsar Functions.

● The Pulsar Functions SDK supports Java, Python, and Go.

● The Pulsar Functions SDK provides a richer API for more complex use cases:
○ One to many output
○ Stateful functions
○ Producing to many different topics

Packaging Functions
In order to run a Pulsar Function, you must first bundle up the function code along
with all the necessary third-party dependencies into a single deployable artifact.

● For Java-based functions, this is either a JAR or NAR file
● For Python-based functions, you can use a single Python file (.py), a ZIP file, or PIP install

(Kubernetes runtime only).
● For Go-based functions, a compiled and packaged .go file

Demo Sentiment Analysis

git@github.com:david-streamlio/sentiment-analysis.git

Summary

● Event-driven microservices use a message bus to communicate among
loosely-coupled, collaborating services.

● Pulsar is a cloud-native, distributed messaging and event-streaming platform
that provides pub/sub semantics required by EDA

● Pulsar includes native, lightweight compute capabilities known as Pulsar
Functions that allow you to build microservices with a few lines of code.

● You can add third-party ML to your Functions to enhance your microservices
with machine learning capabilities.

Let’s Keep
in Touch!

David Kjerrumgaard
Developer Advocate

@Dkjerrumg1

https://www.linkedin.com/davidkj

https://github.com/david-streamlio

https://github.com/tspannhw

