
Security Chaos
Engineering

How to Fix Things (you didn’t know were
broken) and Make Friends While Doing It

David Lavezzo
● Makes people happy
● Makes people sad
● Writes music
● Done Security Chaos Engineering since

2017
● Contributing Author on Security Chaos

Engineering Report, and Security Chaos
Engineering: Sustaining Resilience in
Software and Systems

Please Note
● This is not Red Teaming
● This is not a Penetration Test
● This helps take care of the fundamentals before

paying pure Offensive teams to steal your lunch
money

Part 1 - Nothing works how we think it works

Doom loops are scary and impede the
decision making process

● Constant bombardment on threats that only $vendor
tool can protect against

● Advanced threats everywhere while companies
everywhere struggle with fundamentals

● Bloodhound is still frightening
● How do we identify how things actually work?

Is Security getting better, or better at
shifting responsibility?
● Vulnerabilities keep climbing
● Verizon DBIR points to misconfigurations, not vulns
● Security often does not operate at the speed of

business
● Shift left!
● Complicated

With all the hot fresh defensive tools
available, making it all work together is
still difficult
● “The basics” are actually kind of hard

○ Why do so many struggle with native controls and instead pay vendors to
manage the control

● What are we protecting?
● Need to understand how tools work, if they work, and

continue to work
● Bad user experience doesn’t make it easy

Security incidents are poor methods to
measure detection because the bad
thing already happened
● It’s too late. Fetch happened
● Three bullets look better than two
● We have to discover potential issues before they

mature to incidents

Hope is not a valid strategy

Part 2 - Secure today does not mean secure
tomorrow

SCE isn’t creating chaos, it helps manage
the chaos around us
● Reliable defenses are secure* defenses
● Planned changes can fundamentally alter how a

system operates
● Failing safely is paramount
● Security restrictions create developer innovations in

control bypassing

*yes I know nothing is secure, but I think you get the point

Failure is normal, expected, and should
be embraced
● Complex systems have complex problems
● Failures in defenses can have many causes

○ Misconfigurations
○ Bugs
○ Configuration drift

● Stop focusing on preventing failure, embrace failure
and adapt gracefully

● Attack trees w/https://www.deciduous.app/

Placeholder info
● Change stuff

Part 3 - Experiments in madness

Identifying what you care about is
crucial to success
● What do your customers care about?
● What do you care about?
● How do you want to show your group is doing great

work?
● Let’s prove your value

The Anatomy of an Experiment

● Design a hypothesis
○ “When X happens, we expect this system will respond with Y”

● Create an experiment
○ Outline why we’re doing it
○ What is expected to happen

● Collect evidence
○ Did everything work as expected?
○ Are there gaps or deviations?

● Repeat
○ Forever

Building your experiments

● Break down the attack
● thedfirreport.com is a good starting point
● It’s okay if you can’t do everything, start with what you

can control
○ Endpoint is usually the easiest
○ Please don’t actually ransomware yourself

● For malicious payloads, go with something
non-destructive

○ Like mimikatz
○ EICAR?

endpoint proxy IDS IPS

iwr X X X X

start-process X

tasklist X

sc query X

dreams X

Events should be
everywhere

Attack Stage Description Tags Firewall IPS IDS Web Proxy HIDS App Control AV EDR

Delivery Staged
Download

T1105

Discovery System
Information
Discovery

T1082

Persistence Modified
Scheduled
Task

T1053

Command
and Control

POST beacon T1102

This chart is for entertainment purposes only

Experiments in practice

Proving Outcomes

● Deploying Tool X will make us more secure
○ Prove it by comparing against the current baseline

● System Y is critical to the security of $thing
○ Design a hypothesis and an experiment to validate the assumption
○ If System Y experiences issues, what else will go wrong?

● We want/need systems that can adapt to failure
○ How do we work around it?
○ Can we make it more reliable?

Getting started is the hardest part
● You will likely have to generate your own buy-in
● Choose something simple, impactful, and measurable
● Best case scenario - Everything works as expected and

you’ve created a great baseline
● Worst case scenario - nothing works and it’s time to

start fixing
● Frameworks can come in handy

Part 4 - Measuring Stuff

Frameworks can help you decide what
needs to be done
● What do your customers care about?
● What do you care about?
●

Measuring the reliability of defenses
● “We don’t know what we don’t know” needs to retire
● What if General Mills could only account for 8/10

Cheerios not containing pieces of glass?
● What percentage of glass are you missing?
● Raise the cost of a successful attack

Attack Stage Description Tags Firewall IPS IDS Web Proxy HIDS App Control AV EDR

Delivery Staged
Download

T1105 Missed Logged Logged Logged Logged Blocked Blocked n/a

Discovery System
Information
Discovery

T1082 n/a n/a n/a n/a Logged Logged Logged Alerted

Persistence Modified
Scheduled
Task

T1053 n/a n/a n/a n/a Logged Missed n/a Alerted

Command
and Control

POST beacon T1102 Blocked Missed Logged Logged n/a n/a n/a n/a

This chart is for entertainment purposes only

Experiments in practice

an anime style photograph of five half human, half ravioli friends standing closely together
smiling. They should look frighteningly happy.

Security Chaos Engineering shouldn’t be
limited to engineering
● Hunting

○ Validating analytics continue to work as expected
○ Gap identification

● Architecture
○ Duplicative tooling where overlap is not desired
○ Coverage in depth

● Operations
○ Do critical alerts work? Will they continue to work?
○ What attacks are you vulnerable to? Do your tools work together to provide

high quality signals for analysts?
● Product

○ Do you get expected value from expensive products?
○ Incremental improvement in security footprint and roadmap

Part 5 - Making Friends along the way

Making other programs better helps you
make friends
● Enhancing friendships by helping teams look good
● Proving compliance by delivering secure programs
● Showing continuous improvements
● Supporting business objectives
● Building better systems

Security Chaos Engineering helps you ask
better questions
● What are we building and why?
● Delivering protection designed to withstand failure
● How do we reduce the impact of a malicious actor in

our environment?
● Not “what is the best AV we can buy?”

Making things palatable for others will
make your life easier
● Start small in scope
● Not every miss is a gap to fix
● Understand you’re looking at

things differently and it may not
align with common knowledge

● Target business goals
● Don’t be a pigeon

YOU CAN DO IT

Part 6 - Stuff I learned along the way

