
Future of LLM
Productionization

Deepak Karunanidhi

Future of LLM
deployment

Introduction

Traditional AI Model Development & Deployment

Challenges with Traditional AI Model Deployment

Introduction to Large Language Models (LLMs)

Training and Architecture of Large Language Models (GenAI)

Lang Chain Framework

Application development with Langchain

Lang Chain Demo

Traditional AI models in production

Deploying traditional AI models like BERT (Bidirectional Encoder Representations from
Transformers) in production involves several steps to ensure efficiency, scalability, and reliability.
Here's a generalized outline of the process:

1. Model Training: Initially, you need to train your BERT model on your dataset. This typically
requires significant computational resources and may involve specialized hardware like GPUs or
TPUs.

2. Model Optimization: Once trained, you might optimize your model for deployment. This could
involve techniques like quantization (reducing the precision of weights) to decrease the model
size and make it more efficient during inference.

3. Deployment Environment Setup: Set up the infrastructure for deploying your BERT model. This
involves choosing a deployment environment such as cloud services (e.g., AWS, Azure, GCP) or
on-premises servers.

4. Model Serialization: Serialize your trained BERT model into a format suitable for deployment.
Common formats include TensorFlow's SavedModel format or PyTorch's TorchScript.

Cont...

5. Model Serving: Deploy the serialized model using a web server or specialized model-serving framework (e.g.,
TensorFlow Serving, TorchServe). These frameworks provide APIs for loading the model into memory and serving
predictions over HTTP or other protocols.

6. API Design: Design an API for interacting with your BERT model. This might involve defining input/output formats,
handling authentication, and implementing any necessary pre-processing or post-processing logic.

7. Scalability and Load Balancing: Ensure that your deployment setup can handle the expected load and scale dynamically
as demand fluctuates. This may involve using load balancers and auto-scaling features provided by your deployment
environment.

8. Monitoring and Logging: Implement monitoring and logging to track the performance and health of your deployed
model. This includes metrics like latency, throughput, and error rates, as well as logging of input/output data for
debugging and analysis.

9. Security: Implement security measures to protect your deployed model from unauthorized access and attacks. This
might include encryption of data in transit and at rest, authentication and authorization mechanisms, and regular
security audits.

10. Continuous Integration/Continuous Deployment (CI/CD): Set up CI/CD pipelines to automate the process of testing,
building, and deploying updates to your BERT model. This helps ensure rapid iteration and deployment of
improvements or bug fixes.

11. Versioning and Rollback: Implement versioning for your deployed models to track changes over time and facilitate
rollback to previous versions if needed.

12. Performance Optimization: Continuously monitor and optimize the performance of your deployed BERT model. This

Pytorch Serving – ML models

Large Language Model

LangChain

Value Proposition:

LangChain is designed as a comprehensive toolkit for
developers working with large language models (LLMs). It
aims to facilitate the creation of applications that are
context-aware and capable of reasoning, thereby enhancing
the practical utility of LLMs in various scenarios.

Purpose:

LangChain simplifies the transition from prototype to production,
offering a suite of tools for debugging, testing, evaluation, and
monitoring.

Parts of LangChain Framework

https://www.langchain.com/

•Libraries: Available in Python and JavaScript, these libraries
offer interfaces and integrations for various components, a
runtime for creating chains and agents, and ready-made
chain and agent implementations.
•Templates: This is a set of deployable reference
architectures for diverse tasks, facilitating ease of
deployment.
•LangServe: A specialized library for converting LangChain
chains into a REST API, enhancing accessibility and
integration.
•LangSmith: A comprehensive developer platform designed
for debugging, testing, evaluating, and monitoring chains
created with any LLM framework, fully compatible with
LangChain.

GenAI Application Development with LangChain

Develop

•Streamlined Prototyping:
Simplifies the process of creating
prototypes with large language
models.

•Context-Aware Systems: Facilitates
the building of applications that
understand and utilize context
effectively.

•Integration Support: Offers tools
for integrating various data sources
and components.

•Production Readiness: Provides
resources for debugging, testing,
evaluating, and monitoring
applications.

•Collaborative Development:
Encourages and supports
collaborative efforts in the
developer community.

•Diverse Applications: Suitable for a
wide range of applications, from
chatbots to document analysis.

Turn into product

•Scalability: Provides tools to scale
applications from small prototypes
to larger, production-level systems.

•Robust Testing: Offers robust
testing frameworks to ensure
application reliability.

•Monitoring Tools: Includes
monitoring capabilities to track
performance and user interactions.

•Deployment Ease: Simplifies the
deployment process, making it
easier to launch applications.

•Continuous Improvement:
Supports ongoing development
and refinement of applications
post-launch.

Deploy

•LangServe: A library that allows for
the deployment of LangChain
chains as REST APIs, making
applications easily accessible and
integrable.

•Deployment Templates: Ready-to-
use reference architectures that
streamline the deployment process
for various tasks.

•Scalability Tools: Supports the
scaling of applications from
development to production level.

•Ease of Integration: Ensures
seamless integration with existing
systems and workflows.

•Production-Grade Support: Offers
features for ensuring stability and
performance in production
environments.

Prompting vs. finetuning vs. alternatives

LangChain Demo

Installation and CONFIGURATION

pip install langchain
pip install langchain-openai OPENAI_API_KEY

sudo vi /etc/launchd.conf
export OPENAI_API_KEY = “KEY”

Install LangChain and OpenAI Model: Set up API KEY for OpenAI:

Hello OPENAI LangChain

from langchain_openai import ChatOpenAI

llm = ChatOpenAI()

r = llm.invoke("how can langsmith help with testing?")
print(r)

PROMPT TEMPLATE

from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser

llm = ChatOpenAI()

prompt = ChatPromptTemplate.from_messages([
 ("system", "You are world class technical documentation writer."),
 ("user", "{input}")
])

chain = prompt | llm

r = chain.invoke({"input": "how can langsmith help with testing?"})
print(r)

OUTPUT PARSER
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser

llm = ChatOpenAI()

prompt = ChatPromptTemplate.from_messages([
 ("system", "You are world class technical documentation writer."),
 ("user", "{input}")
])

output_parser = StrOutputParser()

chain = prompt | llm | output_parser

r = chain.invoke({"input": "how can langsmith help with testing?"})
print(r)

	Slide 1: Future of LLM Productionization
	Slide 2: Future of LLM deployment
	Slide 3: Traditional AI models in production
	Slide 4: Cont...
	Slide 5
	Slide 6: Pytorch Serving – ML models
	Slide 7: Large Language Model
	Slide 8
	Slide 9: LangChain
	Slide 10: Parts of LangChain Framework
	Slide 11: GenAI Application Development with LangChain
	Slide 12: Prompting vs. finetuning vs. alternatives
	Slide 13: LangChain Demo
	Slide 14: Installation and CONFIGURATION
	Slide 15: Hello OPENAI LangChain
	Slide 16: PROMPT TEMPLATE
	Slide 17: OUTPUT PARSER
	Slide 18

