
UNVEILING THE POWER OF OBSERVABILITY
USING FLUENT BIT IN AWS EKS

ENVIRONMENT.

DHARMENDRA AHUJA
DEVOPS LEAD

IBM

May 24 2025

You'll learn how Fluent Bit can efficiently collect, parse, filter, and route logs from your

containers, enriching them with Kubernetes metadata and streaming them to destinations like

Amazon CloudWatch, OpenSearch, or any observability backend of your choice. We’ll break down

real-world use cases, show best practices for deploying Fluent Bit as a Daemon Set in EKS, and

demonstrate how to make sense of the endless flow of logs that Kubernetes generates.

Abstract

As cloud-native applications scale across Kubernetes clusters, gaining deep visibility into your
workloads becomes both mission-critical and increasingly complex. In this session, we’ll unveil
how to harness the true power of observability in your AWS EKS environment using Fluent Bit—
the blazing-fast, lightweight log processor built for modern infrastructure.

Introduction to Observability

• Observability = Ability to measure internal states by examining

outputs

• Key Pillars: Logs, Metrics, Traces

• Importance in modern, cloud-native environments

• Why Kubernetes/EKS needs observability

• EKS runs complex, distributed containerized workloads.

• Observability helps you track performance, health, and usage

patterns across services, nodes, and pods.

• It provides visibility into control plane and data plane events.

• Detect pod crashes, OOM kills, or node pressure.

• Monitor CPU, memory, disk, and network usage.

• EKS- Fully managed Kubernetes service by AWS. It

Supports native tools for monitoring and logging

• Logs: Application, system, and Kubernetes logs

• Metrics: CPU, memory, custom metrics

• Traces: Request flows and performance tracing

• Native support for Fluent Bit, Prometheus,

CloudWatch, X-Ray

Observability in EKS

Fluent Bit is a lightweight log processor and

forwarder that allows you to collect data and

logs from different sources, enrich them with

filters and send them to multiple destinations

like CloudWatch, Kinesis Data Firehose, Kinesis

Data Streams and Amazon OpenSearch Service.

Fluent Bit can be used to ship logs to various

destinations. However, in this presentation, we

will see how it shipped to Cloud Watch

Introduction to Fluent Bit

https://fluentbit.io
https://fluentbit.io

1. Collection: Capturing logs from containers, host paths, and

application endpoints

3. Transformation: Structuring, filtering, and masking sensitive

information via parsers and Lua scripts

2. Enrichment: Augmenting log data with Kubernetes metadata
custom tags, and contextual information

4. Intelligent Routing: Directing logs to appropriate destinations
 based on content, namespace, or other attributes

Log Sources: Logs originate from different
sources like containers (Docker, Kubernetes),
log files, syslog, or systemd/journald.

Input Plugins: These plugins collect logs (e.g., tail
for log files, systemd for systemd journal).

Parsers: Transform raw log lines into structured
data (e.g., JSON parsing).

Filters: Modify, enrich, or remove specific log
data before sending it to the destination.

Buffers: Temporarily store logs in memory or disk
in case of high throughput or network delay.

Output Plugins: Push processed logs to external
systems like Elasticsearch, Amazon S3, Kafka, or
another Fluentd instance.

4

5

6

Setup

• To set up Fluent Bit to collect logs from your

containers, the IAM role that is attached to the

cluster nodes must have sufficient

permissions.

• In the following steps, we will set up Fluent Bit

as a daemonSet to send logs to CloudWatch

Logs

• We will use Helm chart to install the

CloudWatch Agent and the Fluent-bit agent on

an Amazon EKS cluster.

• Open ID Connect (OIDC) provider needs to be created

• IAM Policy need to be created, and it has to be associated with the IAM role while

creating service account

• Following dependencies to be installed on machine

• eksctl

• kubectl

• Helm

• Gitbash

Setup (contd.)

Setup (contd.)

To cause the logger server to generate logs we
forward the service to our local environment and use
curl as the client to issue GET requests; in addition
we watch the logs locally. Let’s do that, using three
terminals:

[terminal 1] forward the logger-server traffic locally:
 kubectl -n demo port-forward svc/logger-server
8080:80

[terminal 2] watch logs locally:
$ kubectl -n demo logs deploy/logger-server -f

[terminal 3] generate HTTP traffic:
$ curl localhost:8080

Now, let’s look at the cloud watch console to check if
the logs are generated

The bank runs multiple

microservices on EKS and

needed a unified log

aggregation solution to

comply with financial

regulations requiring detailed

audit trails and easy access to

logs. Logs were previously

scattered across pods and

nodes.

• Deployed Fluent Bit as a

DaemonSet on EKS nodes.

• Configured Fluent Bit to

tail container logs and

enrich them with

Kubernetes metadata.

• Forwarded all logs to

Amazon CloudWatch Logs.

• Integrated CloudWatch

Logs with AWS Lambda for

alerting on anomalies.

Challenge: Solution: Result:

• Centralizing log access

improved troubleshooting

efficiency and operational

visibility.

• Automated alerts

contributed to faster

incident response.

• Compliance audits were

streamlined with easy

access to historical logs.

The company needed a

scalable, low-latency

solution to index logs

from their Kubernetes-

based monitoring agents

deployed on EKS,

allowing customers to

query logs in near real-

time.

• Used Fluent Bit DaemonSet

to collect logs from agent

containers.

• Enriched logs with pod and

namespace info using Fluent

Bit filters.

• Streamed logs to Amazon

OpenSearch Service clusters.

• Built Kibana dashboards for

customers to analyze logs.

Challenge:
Solution: Result:

• Near real-time log

availability improved

monitoring and

troubleshooting.

• Customers gained

enhanced search and

analytics capabilities.

• Operational overhead was

reduced by leveraging

managed OpenSearch

service.

The gaming platform

used Datadog for

observability but needed

an efficient way to send

EKS container logs to

Datadog without

impacting cluster

performance.

• Deployed Fluent Bit with

the http output plugin

configured for Datadog's

API.

• Applied filters to reduce

unnecessary log volume in

production.

• Used Kubernetes

metadata enrichments for

better log context.

Challenge: Solution: Result:

• Reduced log ingestion

costs through selective

filtering.

• Improved debugging

experience with enriched

logs in Datadog

dashboards.

• Seamless integration

achieved without

modifying application

code.

Maintaining HIPAA

compliance required

collecting and retaining

audit logs from

containerized workloads

on EKS, including system

and application logs.

• Fluent Bit DaemonSet

collects container logs

and Linux audit logs via

systemd input plugin.

• Logs were forwarded to

a dedicated S3 bucket

for long-term retention.

• Security team used

Splunk to ingest from S3

for forensic analysis.

Challenge: Solution: Result:

• Ensured compliance

with regulatory

requirements for log

retention.

• Enabled more effective

incident investigations.

• Reduced manual log

management efforts.

Platform served multiple

customers (tenants)

running their apps in

isolated Kubernetes

namespaces on a shared

EKS cluster. Logs needed

to be isolated and securely

routed per tenant.

• Fluent Bit deployed as

DaemonSet with filters to

add tenant labels based on

namespaces.

• Configured routing rules to

send logs to separate

Grafana Loki tenants using

the loki output plugin with

tenant-specific URLs.

• Enforced access control so

tenants could only view

their own logs.

Challenge: Solution: Result:

• Enabled multi-tenant log

isolation without the need

for separate clusters.

• Tenants gained self-service

log access with ensured

data privacy.

• Simplified platform

operations with

centralized log

management.

References

• https://docs.aws.amazon.com/AmazonCloudWatch/latest/
monitoring/Container-Insights-setup-logs-FluentBit.html

• https://aws.amazon.com/blogs/containers/fluent-bit-for-
amazon-eks-on-aws-fargate-is-here/.

• https://medium.com/@tolghn/advanced-logging-
architecture-for-amazon-eks-with-fluent-bit-and-amazon-
opensearch-service-9f2a80fff755.

https://aws.amazon.com/blogs/containers/fluent-bit-for-amazon-eks-on-aws-fargate-is-here/
https://aws.amazon.com/blogs/containers/fluent-bit-for-amazon-eks-on-aws-fargate-is-here/
https://aws.amazon.com/blogs/containers/fluent-bit-for-amazon-eks-on-aws-fargate-is-here/
https://aws.amazon.com/blogs/containers/fluent-bit-for-amazon-eks-on-aws-fargate-is-here/
https://medium.com/@tolghn/advanced-logging-architecture-for-amazon-eks-with-fluent-bit-and-amazon-opensearch-service-9f2a80fff755
https://medium.com/@tolghn/advanced-logging-architecture-for-amazon-eks-with-fluent-bit-and-amazon-opensearch-service-9f2a80fff755
https://medium.com/@tolghn/advanced-logging-architecture-for-amazon-eks-with-fluent-bit-and-amazon-opensearch-service-9f2a80fff755

DHARMENDRA AHUJA

www.reallygreatsite.com

THANK YOU

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

