Building Developer-Driven Platforms

Automation and Ul Excellence

- Founder of Batteries Included (cgo)

- Facebook (Ads Tech Leads, Dev Efficiency,
Distributed Datastores)

- Cloudera (Apache HBase)

* Startups (pata, stats, Frontend)
» Microsoft (c# and wer)

Example Platform Goals

Always strive higher

/%;\ Help build sustainable & maintainable software
=/ for our users

Speed up their time from idea to in production

//\ Maintain reliability of all services and help when
¥/ there are issues

#1 Source of incidents?

It's me. HL.

I'm the problem, It's me

Two Causes

Major root causes of issues, not the only

We didn't understand the We didn't properly test or
problem verify

Not Enough Testing

- We didn't have proper test coverage

- We didn't have integration tests for
that

- We didn't test restoring backups

- We haven't tested failing over to
redundant systems

Didn't Understand

« We didn't understand the tool
« We didn't understand success

« We didn't understand there was a
more straightforward solution

» We haven't understood our systems
at that load/size/scale

X
-
%

What's the cause

1 2 3

New Project Change Onto the pipeline Production Impact
A developer adds a new DB user Testing locally works well, test In the best case, our gitops

and increases storage for the environments pass, so the other pipelines start failing now,

production environment, engineer on the project approve stopping all other forward

mistakenly including the wrong the pull request. progress of other teams. In the

units in the storage size. worst case: pods don't schedule.

Everything went wrong

- Understanding there were 2 changes
- Understanding YAML schemas and input value

types
- Testing changes for specific environments

» Testing signals being trusted when there are
gaps
» Understanding who will code review

- Understanding how to continue deploying after
failure

Make a tool for that

Automate the most frequent or scary

changes that your users make

.
Wk A

.-'_q‘
i '1;

Create Ul's that validate and ensure

[

testing of a changed environment

Repeat, until almost all operational

changes are through tools

Risk vs Reward

Bloudering: Small fall Climbing: Large safety net Please don't climb free solo
without safety nets means controlled assents iIn production

https://commons.wikimedia.org/w/index.php?curid=127779918

dalSIPDp up Users instinctively try and get off of pop ups or
Ul Patterns) Mo

encourage SPEEd modals so they pay less mental attention to

correctness

Structured input and early feedback make users

Not everything works for Early Input | |
“ l b t th] _ more likely to follow or heed the advice and not
dll places, but these Validation *frustrated
et frustrated.
patterns have worked well. °
. Knowing what systems or person took action at
Event/Action
.] what times is critical to finding and fixing
attribtuion
production issues.
. Making recent changes easily discoverable allows
Hilight recent | |
faster debugging and encourages exploration,
changes

aiding in onboarding and reliability.

Batteries Included

Fair source, all inclusive software
infrastructure platform

https://www.batteriesincl.com/
0 @ elliott@batteriesincl.com

https://github.com/batteries-included

