
BY IJEOMA ETI

Optimizing Cache
Usage in Docker
Builds

About Me:

Software Engineer.
Passionate about sharing knowledge through
writing.
Active contributor to the community through
open-source projects.

 Find me on:
LinkedIn : https://www.linkedin.com/in/ijeoma-eti
X (formerly Twitter): https://x.com/EtiIjeoma
GitHub: http://github.com/Aijeyomah

Why Do Docker Builds Feel Slow?
➥ Even minor code changes can trigger full rebuilds, significantly increasing build times.

➥ Without optimization, unnecessary steps are repeated, leading to wasteful compute
usage.
➥ In CI/CD environments, long build times delay testing, deployment, and impact overall
developer productivity.

Importance of Build Optimization
➥ Speeds up development: Faster builds lead to shorter feedback loops, improving
productivity.
➥ Reduces compute costs: Avoiding redundant processing conserves resources, reducing
infrastructure expenses.
➥ Improves CI/CD performance: Optimized caching ensures that pipelines run efficiently,
enabling faster releases.

Introduction

How Docker Builds Work
➢ Loads Build Context (All files in the directory)
➢Parses the Dockerfile, executing each instruction
➢Creates Immutable Layers for each step
➢Uses Caching to speed up rebuilds

Example Dockerfile Layers:
 FROM python:3.10
 WORKDIR /app
 COPY requirements.txt . # Layer 3
 RUN pip install -r requirements.txt # Layer 4
 COPY . . # Layer 5
 CMD ["python", "app.py"] # Metadata Layer

Understanding Docker Builds

What is Docker Cache?
∎ Saves previously built image layers
∎ Speeds up builds by reusing unchanged steps

How Docker Caching Works

Key Concept: Layered Caching

Step

1

2

3

4

5

Instruction

FROM python:3.10

WORKDIR /app

COPY requirements.txt .

RUN pip install -r requirements.txt

COPY . .

Cacheable?

Yes

Yes

Yes

Yes

No

Explanation

Base image is cached

Doesn’t change often

Cached if unchanged

Cached if dependencies don’t change

Breaks cache if any file changes

➊ Common Reasons for Slow Builds
➋ Unnecessary Cache Busting
➌ Poor Dockerfile Structure
➍ Changing Dependencies Too Often
➎ Inefficient Use of COPY and ADD
➏ Ignoring Build Context Best Practices
➐ Large Image Sizes

How do we fix these? → Let’s analyze each.

 The Problem – Why Docker Builds Become Inefficient

Why It’s Bad?

Changes in early steps invalidate cache

Copies unnecessary files, breaking
cache

Fetches new package lists, breaking

cache

Unnecessary file extraction causes
cache invalidation

Any change in directory invalidates
cache

Mistake

Wrong Order of
Instructions

Using COPY . .

Running apt update
Without Pinning Versions

Using ADD Instead of
COPY

Using Wildcards (*)

Common Pitfalls That Break Docker Caching

Fix

Move frequently changing
steps to the end

Use .dockerignore and copy
files explicitly

Pin package versions and
remove unnecessary files

Use COPY unless extracting
archives

Be explicit about copied files

Best Practices for Optimizing Docker Builds Using Cache

➤ Structuring Dockerfiles for Maximum Cache Reuse
➤ Placing Stable Instructions Before Frequently Changing
Ones
➤ Using Multi-Stage Builds to Reduce Final Image Size
➤ Leveraging .dockerignore to Reduce Build Context Size

➨ Structuring Dockerfiles for Maximum Cache Reuse
➨ Placing Stable Instructions Before Frequently Changing Ones
➨ Using Multi-Stage Builds to Reduce Final Image Size
➨ Leveraging .dockerignore to Reduce Build Context Size
➨ Using Arguments (ARG) vs. Environment Variables (ENV) in Docker Builds
➨ Selecting the Right Base Image to Improve Build Performance

 Example Optimized Dockerfile:
 FROM node:18
 WORKDIR /app

 # Copy dependencies first
 COPY package.json package-lock.json ./
 RUN npm install # Cached unless dependencies change

 # Copy the rest of the app
 COPY . .
 CMD ["node", "index.js"]

Best Practices for Optimizing Docker Builds Using Cache

Using Mounts for Build Caching

➤ Bind Mounts vs. Volume Mounts for Caching
➤ --mount=type=cache for BuildKit

Leveraging External Cache Sources

➤ Remote Cache in CI/CD Pipelines
➤ Using Docker Buildx for Distributed Caching

Example: Persistent Caching in CI/CD

docker buildx build --cache-from=type=registry,ref=myrepo/cache --cache-
to=type=registry,ref=myrepo/cache,mode=max .

Advanced Docker Caching Techniques

Using BuildKit to Supercharge Docker Builds
What is BuildKit?

➦ Faster parallel builds
➦ Automatic cache optimization
➦ More efficient file handling

Enabling BuildKit:

Measuring and Debugging Build Performance
How to Check if Cache is Working?

➤ docker build --progress=plain
➤ docker history myapp

Tools to Analyze Docker Images:

Tool

docker history

dive

time docker build

Purpose

Shows image layers

Analyzes image size

Measures build time

Conclusion
➣ Understand how Docker caching works
➣ Optimize Dockerfile structure for caching
➣ Avoid cache-breaking mistakes
➣ Use advanced caching techniques in CI/CD

Next Steps:
➣ Apply these best practices to your projects
➣ Experiment with Docker BuildKit for better caching
➣ Optimize CI/CD pipelines for efficient builds

