The Hidden Potential of
Python’s Dunder Methods

Writing smarter, more intuitive code with Python’s magic methods

By: ljeoma Eti

PAOYAS

About Me:

- Software Engineer with over 5 years of experience.
- Passionate about sharing knowledge through writing.
- Active contributor to the community through open-source

projects.

Find me on:

- LinkedIn: https://www.linkedin.com/in/ijjeoma-eti
- X (formerly Twitter): https://x.com/Etiljeoma

- GitHub: http://github.com/Aijeyomah

PAOYAS

What Are Dunder Methods?

* Dunder methods, or "magic methods," are double-underscore

methods like _init ', add . and __str

— —_—) —

e These methods are predefined by Python and enable objects to
interact with built-in functions and operators seamlessly.

e Examples of dunder methods:
__len__ — Determines the length of an

object.

__add__ — Defines behavior for the + operator.

__getitem__ — Enables index-based access.

All dunder methods are part of the module,

automatically imported when Python starts.

PAOYAS

Why Use Dunder Methods

e Dunder methods make objects feel like built-in types, enhancing
usability.

e Enable intuitive APIs by integrating custom objects with Python
syntax.

e Powerful popular libraries like NumPy and SQLAIchemy.

e Simplify complex tasks with domain-specific designs.

PAOYAS

Examples from Popular Libraries

Real-World Examples of Dunder Methods
Example 1: NumPy Array Operations

import numpy as np

np.array([1l, 2, 3])
np.array([4, 5, 6])

result = a + b
print(result) # Output: [5 7 9]

e NumPy overloads operators like + and * to enable element-
wise operations.

PAOYAS

Example 2: SQLAIchemy Query Expressions

from sglalchemy import Column, Integer, String, MetaData, Table

metadata = MetaData()

users = Table(
‘users', metadata,

Column('lwd', Integer, primary_key=True),
Column('‘name’, String),

)

query = users.c.name == "John"
print(query)

e SQLAIchemy uses dunder methods like __eq__ to simplify SQL query construction.

PAOYAS

How Dunder Methods Work

How Are Dunder Methods Defined?
e Dunder methods are not arbitrary; they are predefined by Python’s data model.
e You cannot create custom dunder methods with random names like

Example:

class MyC .
def __custom_ (self):

return "This does nothing
special.”

o Python ignores unless explicitly called.
o Stick to predefined methods like and for consistency.
e These methods are triggered implicitly by the interpreter based on specific syntax
or operations.

PAOYAS

Creating a Custom Class

Building Intuitive APIs with Dunder Methods
Step 1: A Basic Class

class Point:
def __init__(self, x, v):
self.X = X
self.y =y

point = Point(2, 3)
print(point)

e Default behavior: Python shows the object’s memory address.

PAOYAS

Step 2: Adding __repr__ for Readability

class Pouint:
def __repr__(self):
return f"Point({self.x}, {self.y})"

print(Point(2, 3))

By Implementing __repr__, objects now display meaningful information.

PAOYAS

Adding Custom Behavior

Enhancing Classes with
Problem: Adding two Point objects doesn’t work:

pointl = Point(2, 3)
point2 = Point(4, 5)
result = pointl + point2

Solution: Implement to define how addition should work:

def __add__(self, other):
return Point(self.x + other.x, self.y +

Result:
pointl = Point(2, 3)
point2 = Point(4, 5)

print(pointl + pownt2) # Output: Pount(6, 8)

This makes the + operator work intuitively for objects.

PAOYAS

Exploring More Dunder Methods

Other Useful Dunder Methods
1. Equality with
Define how two objects are compared for equality:

def __eq__(self, other):
return self.x == other.x and self.y ==

other.y

Example:

Point(2, 3) == Pownt(2, 3) # True
Point(2, 3) == Poiwnt(4, 5) # False

Makes objects comparable using ==.

PAOYAS

Exploring More Dunder Methods

2. Scaling with
Allow objects to be multiplied by a scalar:

def _ _mul__(self, scalar):

return Point(self.x * scalar, self.y *
scalar)

Example:

point = Point(2, 3)
print(point * 3) # Output: Point(6, 9)

Provides a clean way to scale objects.

PAOYAS

Exploring More Dunder Methods

3. Iterating with
Make objects iterable, enabling looping over their attributes:

def _ 1ter_ (self):
return iter((self.x, self.y))

Example:
point = Poiwnt(2, 3)

for coord i1n point:
print(coord)

e Simplifies access to an object’s internal data.

PAOYAS

Iterating Over Objects

Title: Making Classes Iterable
e Use to allow looping over objects.

class Pouint:
def 1ter_ (self):
return iter((self.x, self.y))

point = Point(2, 3)
for coord in pouint:
print(coord)

PAOYAS

When Not to Use Dunder Methods

Avoiding Overuse and Misuse
1.Don’t Overcomplicate:
o Use regular methods for simple tasks.

class Calculator:
def add(self, a, b):
return a + b

Stick to the Rules:

Don’t invent unsupported dunder methods like
Be Intuitive:

Avoid confusing operator overloads.

for simple tasks.

def __add__(self, other):
return self * other

PAOYAS

Conclusion

e Key Takeaways:
o Dunder methods integrate custom objects seamlessly with
Python’s syntax.
o They simplify APIls, enhance readability, and enable
powerful domain-specific designs.
e Call to Action:
o Use dunder methods thoughtfully to build intuitive,
Pythonic solutions.
Quote: "Dunder methods are not just tools; they’re a way to speak
Python’s native language.”

1L ELLA 1T

