When "go build" isn't enough:
Introduction to Bazel

Apr 25, 2024

Eugene Khabarov
Lead Developer, Arctic Wolf
Ottawa, ON, Canada

4/19/24,2:10 AM When "go build" isn't enough: Introduction to Bazel

Agenda

e Build process
e Dependencies

e Bazel

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1 2/40

4/19/24,2:10 AM When "go build" isn't enough: Introduction to Bazel

Build and dependencies

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1 3/40

4/19/24,2:10 AM When "go build" isn't enough: Introduction to Bazel

What is "go build"?

e A command which compiles the packages named by the import paths, along with their
dependencies.

e go build takes a list of *.go files as an argument and produces a executable binary.

e

[*.80 } | |)[executab|e]

[=20 J go build

CO m p | | e pa C ka geS an d d e pe N d enc | es (https://pkg.go.dev/icrd/go#hdr-Compile_packages_and_dependencies) 4

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1 4/40

https://pkg.go.dev/cmd/go#hdr-Compile_packages_and_dependencies

4/19/24,2:10 AM When "go build" isn't enough: Introduction to Bazel

Do we have all of the *.go files from the beginning?

e // go.generate <some arbitrary binary or script here>
e make generate
e generate.sh

o efC.

g —>| executa bIeJ

go build

—)[generated.go

generator 5

R

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1 5/40

4/19/24,2:10 AM When "go build" isn't enough: Introduction to Bazel

Dependencies: part |

e Go packages
e Go compiler

e (Generators

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1 6/40

4/19/24,2:10 AM When "go build" isn't enough: Introduction to Bazel

Where do we run our build?

e MacOS/ Linux/ etc.
e amd64/arm64 / etc.

e Local machine/ Cl runner/ etc.

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1 7/40

4/19/24,2:10 AM When "go build" isn't enough: Introduction to Bazel

Dependencies: part I

e Host machine is a machine where we run a build
e Target machine is a machine we build software for

e Environment variables

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1 8/40

4/19/24,2:10 AM When "go build" isn't enough: Introduction to Bazel

i-f-p‘r' .
t-,"
¢

W

4 r

NOW WHAT? |

imgflip.com

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1

4/19/24,2:10 AM When "go build" isn't enough: Introduction to Bazel

Publishing

e Container images
e tar/zip archives: AWS lambdas
e Kubernetes manifests / Helm charts / CloudFormation templates / etc.

e etc. 10

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1 10/40

4/19/24,2:10 AM When "go build" isn't enough: Introduction to Bazel

Dependencies: part llI

e Docker
e Kustomize/Ytt/ Helm / any other templating tool

AWS cli

e Make (for some automation of all above)

e etc. 11

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1 11/40

4/19/24,2:10 AM When "go build" isn't enough: Introduction to Bazel

What is the dependency, btw?

TECHNICALLY, EVERYTHING),
INVOLVED INTO A'BUILD PROGESS

12

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1 12/40

4/19/24,2:10 AM When "go build" isn't enough: Introduction to Bazel

How do we control our dependencies?

e Go packages: go.mod/go.sum.

e Go compiler: specific version pre-installed into container image or random Go version on
host machine.

e Generators: depends on generator.
e Platforms: build flags or running build on a specific platform.
e Environment variables: explicitly set during the build.

e Docker / Kustomize / Ytt / Helm / AWS cli; do we? 13

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1 13/40

4/19/24,2:10 AM When "go build" isn't enough: Introduction to Bazel

What else should we consider during the build process?

e |s our build reproducible?
¢ |s our build well isolated/hermetic*? (Hello Docker!).

e When build fails, can we restart from the failure point but not from the beginning?

* more on this later
14

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1 14/40

4/19/24,2:10 AM When "go build" isn't enough: Introduction to Bazel

The output of the build process aka artifacts

e Go binaries
e Container images and/or tar/zip archives

e YAML manifests

We're going to build and publish ready-to-deploy artifacts, but not to deploy them.

executable

@

go build

13

generator

yam>’¢ tar/zip Docker

HELM, etc.
* = = g =
”a"" (Helm charts, | [\ Lo

\ / Artifacts

B

S3 bucket ECR 15

*

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1 15/40

4/19/24,2:10 AM When "go build" isn't enough: Introduction to Bazel

Why "go build" isn't enough?
e go build is just an one step of the build process.

e While what we actually need is a Build orchestration. 16

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1 16/40

4/19/24,2:10 AM When "go build" isn't enough: Introduction to Bazel

Problem scope
Automate the following process:

e Download and install all necessary dependencies (generators, compilers, tools, etc.)
e Build artifacts.
e Publish artifacts to ECR/ S3/ etc.

Other requirements:

e Make a build as isolated as possible.

e Make a build as reproducible as possible, i.e. pin versions of all dependencies. 17

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1 17/40

4/19/24,2:10 AM When "go build" isn't enough: Introduction to Bazel

Bazel

18

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1 18/40

4/19/24,2:10 AM

Hello Bazel!

When "go build" isn't enough: Introduction to Bazel

e An open-source build and tests tool that uses human-readable, high-level build language
to define build in a declarative way.

e Aimed to build large codebases.
e Supports multi-language and multi-platforms builds

e [t unifies build approaches across multiple languages and multiples toolchains.

W Bazel

19

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1 19/40

4/19/24,2:10 AM When "go build" isn't enough: Introduction to Bazel

Build & cache

e Parallel build: Bazel uses as many cores as it found.

e Build can be run on a local or remote machine.
e Can build everything from sources including dependencies.
e Bazel caches all downloaded dependencies and intermediate build results.

e Tracks changes in sources and rebuilds changed parts only. 20

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1 20/40

4/19/24,2:10 AM When "go build" isn't enough: Introduction to Bazel

Hermeticity & Sandboxing
Hermiticity:

When given the same input source code and product configuration, a hermetic build
system always returns the same output, i.e. hermetic builds are insensitive to libraries and
other software installed on the host machine.

Source identity:

Hermetic build systems try to ensure the sameness of inputs by using checksums to identify
changes to the build's input.

Sandboxing:
Compilers and other tools during the build have an access to explicitly defined inputs only.

baZE| . b u | | d/d OCS/Sa N d bOX| ng (https://bazel.build/docs/sandboxing)

ba e | . b u | | d/ ba S | CS/ h erm et| C|ty (https://bazel build/basics/hermeticity) 21

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1 21/40

https://bazel.build/docs/sandboxing
https://bazel.build/basics/hermeticity

4/19/24,2:10 AM When "go build" isn't enough: Introduction to Bazel

It's demo time!

22

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1 22/40

4/19/24,2:10 AM When "go build" isn't enough: Introduction to Bazel

Hello world generator (main.go)

package main
import "fmt"
func main() {
fmt.Println(’
package main

import "fmt"

func main() {
fmt.Println("Hello, World!")
}

g |th u b .CO m/ e kh d ba FOV/ h e | | OoOwWoO I’| d 'ge ne ratO r (https://github.com/ekhabarov/helloworld-generator) 23

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1 23/40

https://github.com/ekhabarov/helloworld-generator

4/19/24,2:10 AM When "go build" isn't enough: Introduction to Bazel

Hello world generator

% go build -o hw_generator main.go
//go:generate hw_generator > hw.go
% go generate ./...

% cat hw.go
package main

import "fmt"

func main() {
fmt.Println("Hello, World!™)
}

% go build -o hello-world hw.go
% ./hello-world

Hello, World!
24

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1 24/40

4/19/24,2:10 AM When "go build" isn't enough: Introduction to Bazel

And with Bazel

% bazel run //go:hello-world
Hello, World!

e run - Bazel command.
e //go:hello-world - label, a unique name for a target.

e // - project root.

//go - package.

:hello-world - build target. -e

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1 25/40

4/19/24,2:10 AM

Hello world generator: Bazelified

When "go build" isn't enough: Introduction to Bazel

e WORKSPACE: defines a project root // and may contain external dependencies.

e BUILD.bazel: defines a package like // or //go. Declares zero or more build targets for the
package. In most of the cases Bazel package structure is the same as directory structure.

— BUILD.bazel

— WORKSPACE

L— BUILD.bazel

G |th u b Re p (0] (https://github.com/ekhabarov/blog-code-snippets/tree/master/how-to-bazel/genereate-and-compile-go-code)

B | Og p @) St (https://ekhabarov.com/post/how-to-generate-code-with-bazel/) 26

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1 26/40

https://github.com/ekhabarov/blog-code-snippets/tree/master/how-to-bazel/genereate-and-compile-go-code
https://ekhabarov.com/post/how-to-generate-code-with-bazel/

4/19/24,2:10 AM When "go build" isn't enough: Introduction to Bazel

Starlark

Starlark syntax is a strict subset of Python and Starlark semantics is almost a subset of that
language. In particular, its data types and syntax for statements and expressions will be very
familiar to any Python programmer. However, Starlark is intended not for writing
applications but for expressing configuration. 27

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1 27/40

4/19/24,2:10 AM When "go build" isn't enough: Introduction to Bazel

WORKSPACE

¢ Ruleset: An extension for Bazel.

load("@bazel tools//tools/build_defs/repo:http.bzl", "http_archive")

http_archive(
name = "io_bazel_rules_go",
sha256 "dd926a88a564a9246713a9c00b35315f54cbd46b31a26d5d8fb264c07045f05d",

urls = [...],

)
load("@io0_bazel_rules_go//go:deps.bzl", "go_register_toolchains", "go_rules_dependencies")
go_rules_dependencies()
go_register_toolchains(version = "1.20.3") # Go version
load("@bazel gazelle//:deps.bzl", "go_repository")
g0_repository(
name = "hw_generator",
importpath = "github.com/ekhabarov/helloworld-generator",

sum = "h1:MrREQgX6I0/4cstUhbugfALzUF3W2Nz8kVZRg6A4q+E=",
version = "v0.0.1",

28

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1 28/40

4/19/24,2:10 AM When "go build" isn't enough: Introduction to Bazel

go/BUILD.bazel

e Rule: A function implementation. It takes an input and produces an output.

e Target: A buildable unit.
load("@io_bazel rules_go//go:def.bz1l", "go_binary", "go_library")

genrule(
name = "generate_hello_go",
outs = ["hello.go"],
cmd = "$(execpath @hw_generator//:helloworld-generator) > $@",
tools = ["@hw_generator//:helloworld-generator"],

)

go_library(
name = "hello-world 1lib",
srcs = ["hello.go"],
importpath = "github.com/ekhabarov/helloworld-generator",

)
go_binary(

name = "hello-world",

embed = [":hello-world 1lib"],

importpath = "github.com/ekhabarov/helloworld-generator",
)

29

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1 29/40

4/19/24,2:10 AM When "go build" isn't enough: Introduction to Bazel

Build & run

bazel run //go:hello-world =>
:——> bazel build //go:hello-world =>
:——> bazel build //go:hello-world_lib =>

:——> bazel build //go:generate_hello_go =>

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1

runs hello-world binary
creates hello-world binary
creates hello-world.a

creates hello.go

30

30/40

4/19/24,2:10 AM When "go build" isn't enough: Introduction to Bazel

Demo: Microservices, Kubernetes and Tilt

Kubernetes cluster

@ @gnpc :5000
service-one-77677bfdd9-rfngr service-one
O &
envoy-68596b8c96-zjnlz envoy
@ @gnpc :5000

authz-685bccdd58-whdgb authz

gRPC :8080 HTTP

e build two gRPC services
e build Docker images for the services, and for Evnoy proxy

e deploy all into local k8s cluster (minikube)

e kh d ba OV.CO m/ e nvoy (https://ekhabarov.com/envoy) 31

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1 31/40

https://ekhabarov.com/envoy

4/19/24,2:10 AM When "go build" isn't enough: Introduction to Bazel

Labels

Common format
% bazel (build | test | run) //path/to/package:target

Build everything in a workspace
% bazel build //...

or

% bazel build //:all

Build everything in package "abc" recursively
% bazel build //abc/...

or

% bazel build //abc/:all

Build external dependency
% bazel build @hw_generator//...

Build one target
% bazel build //go:hello-world

Run one target

% bazel run //go:hello-world
32

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1 32/40

4/19/24,2:10 AM When "go build" isn't enough: Introduction to Bazel

Should we write BUILD files manually?
Partially, thanks to Gazelle, which:

e Generates BUILD files
e Keeps them up to date
e Formats BUILD files

e Manages dependencies
Manually added targets:

e Container images
e YAML manifests
e Publishing artifacts

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1

33

33/40

4/19/24,2:10 AM When "go build" isn't enough: Introduction to Bazel

What else?

34

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1 34/40

4/19/24,2:10 AM When "go build" isn't enough: Introduction to Bazel

Bazel query
Some questions that query answers:

e What packages use package or tool X?
e Which dependencies package X has?

What files are generated foo package?

What rule target(s) contain file path/to/file.go as a source?

e Where a transitive dependency came from?

Ba Zel Q ue ry H OW‘TO (https://docs.bazel build/versions/main/query-how-to.html)

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1

35

35/40

https://docs.bazel.build/versions/main/query-how-to.html

4/19/24,2:10 AM

Dependency graph

$ bazel query --noimplicit_deps 'deps(//:image)' --output graph | grep -v ... > graph.1in

When "go build" isn't enough: Introduction to Bazel

Iimage

—

\

(@distroless_base//:distroless_base /f:app_layer /f:_image write_entrypoint

|

P

N\

/:app @rules_pkg//pkg/private:private_stamp_detect (@bazel_tools/,

a rc/conditions:host_windows

Y

{1:cbx-example-golang_lib

N

/lmain.go

(weom_github_google_uuid//:uuid

@com_github_google uuid//:time.go
(@eom_github_google_uuid//:version4.go
(@com_github_google_uuid//:marshal.go
@com_github_google wuid//:node net.go
(@com_github_google_uuid//:versionl.go

@com_github_google uuid/:null.go

(@com_github_google uuid/:unid.go

@com_github_google uuid/:util.go

@eom_github_google uuid//:dce.go

@com_github_google uuid//-hash.go

@com_github_google wuid//:sql.go

(@com_github_google_uuid//:node.go
@eom_github_google uuid/mode_js.go

...and 1 more items

$ dot -Tpng < graph.in > graph.png

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1

Y

@bazel tools//

¢/conditions:host_windows arm64 _constraint
@bazel_tools//sre/

/conditions:host_windows_x64_constraint

36

36/40

4/19/24,2:10 AM When "go build" isn't enough: Introduction to Bazel

Extensibility
¢ Ruleset: An extension for Bazel.
Available rules;

e rules_go

e rules oci

e rules_proto
e rules_ytt

e rules_erlang
¢ rules_haskell
e rules kotlin

o efC.

awesome b aze | .Com (https://awesomebazel.com) 37

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1 37/40

https://awesomebazel.com/

4/19/24,2:10 AM When "go build" isn't enough: Introduction to Bazel

More info on Bazel

ba ZE| . b u | |d (https://bazel.build)

awesome b aze | .Com (https://awesomebazel.com) 38

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1 38/40

https://bazel.build/
https://awesomebazel.com/

4/19/24,2:10 AM

Thank you

When "go build" isn't enough: Introduction to Bazel

Eugene Khabarov
Lead Developer, Arctic Wolf
Ottawa, ON, Canada

httpS / / e kh d ba Fov.cOom (https://ekhabarov.com)

127.0.0.1:3999/bazel-vs-go-build/bazel-vs-go-build.slide#1 39/40

https://ekhabarov.com/

