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Lessons Learned – Key Benefits for SREs and Platform Engineers

The Current State of Chaos Engineering

Bring up to speed 
new SRE resources

Discover blind spots
and reduce unknown 

behaviours

Improve 
communication 

inside the SRE team

Improve MTTD/MTTR
using new 

technologies
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What is eBPF?
„eBPF, which stands for extended Berkeley Packet Filter,
is an extraordinary technology with origins in the Linux 
Kernel, that can run sandboxed programs in a privileged 
context.”

source: https://ebpf.io/what-is-ebpf/
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source: https://pixabay.com/photos/honey-bees-insects-hive-bee-hive-401238/ 
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➢ eBPF tools instrument 
the system without any 
app or config changes

➢ The kernel is with eBPF like 
the Big Brother now.  
It sees everything!

eBPF makes the kernel programmable



How we technically load the eBPF program into the kernel?

How does eBPF work? (II)

Python code that compiles my eBPF program:

#!/usr/bin/python3  
from bcc import BPF

program = eBPF_PROGRAM

b = BPF(text=program)
syscall = b.get_syscall_fnname("execve")
b.attach_kprobe(event=syscall, fn_name="hello")

b.trace_print()

Every time a new program runs on this virtual machine, 
the hello()eBPF program will be triggered.

source: https://ebpf.io/what-is-ebpf/

Info about process that 
called execvesyscall

source: https://ebpf.io/what-is-ebpf/

eBPF Hello World



Improved Chaos Experimentation observability: eBPF programs can be aware of everything

Augmenting Chaos Engineering with eBPF 

E2E
Mission Control

CI/CD
pipeline

Kubernetes

Cloud 
Native

my-app.yaml

Containers:
-name: my-app
…
-name: my-app-init
...

User space

container

pod

kernel

create 
containers

access 
file

networking

kernel

userspace

pods

➢ eBPF Programs can be aware of everything, 
we can now reproduce any disruptive application 
and platform behaviours.

We can see much more in Production!

container

Chaos Engineering 
platform

k8s node
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Improved security context-awareness on a more Cloud-Native level

Augmenting Chaos Engineering with eBPF 

Benefits?

➢ eBPF does not need any app changes

➢ eBPF can see all activities on the node

➢ eBPF is applied to enable security
observability

➢ eBPF data can be used to generate
metrics & events, which are used as 
input for our AI prediction

source: https://pixabay.com/photos/bees-insects-macro-honey-bees-4126065/
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Typical attacking surface

Potential security k8s vulnerabililties

Top 3 vulnerabilities for Kubernetes attacks:

➢ Misconfigured Container
➢ Unintentional Cluster Misconfiguration
➢ Malicious Container Image

What can we expect from a cyber attack ?

➢ Run another instance of kubelet on the same nodes
➢ Privileges pods
➢ Host network-enabled pod network direct attack
➢ Malicious webhook
➢ Pod network can be used for exploitation
➢ Using insecure root mounts
➢ Kubernetes cronjob/jobs
➢ Pod default tokens
➢ Kubernetes External-IPs

Kubernetes Cluster

Master Node

etcd

Control-plane components

Worker Node
kubelet

Pod

Container Application

Access via kubelet API

• Intercept/modify/inject
application traffic

• Exploit vulnerability
in application code

• Escape container to host
through vulnerability or
volume mount

• Intercept/modify/inject 
control-plane traffic

• Access via kubernetes
API or proxy

Access to machines/VMs

Access to etcd API

source: https://www.oreilly.com/library/view/kubernetes-

security/9781492039075/ch01.html



Leverage Cilium’s Advanced Network Policy

Advanced Chaos Experiments with eBPF

Isolate pods

Create better network 
Experiments

Service Mesh 
Experiments

Multi-Cluster 
Experiments

Benefits

Cilium EBPF

eBPF removes the need to kill or delete the pod and to 
deploy any new tools.  

Network resource 
exhaustion

Node IO resource 
exhaustion

Pod resource 
exhaustion

Future proof 

source: https://cilium.io/use-cases/network-policy/
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eBPF goes beyond traditional networking in enhancing the Chaos Engineering landscape  

Augmenting Chaos Engineering with AI and GenAI

observe events

filter events

alerts

eBPF data

What is the cause?
What is affecting?

Predicable behaviour?

SRE

AI-Driven recognition Benefits

❑ Discover unknown patterns

❑ Analyze App behaviour

❑ Predict based on historical attacks 

Generate better Hypothesis based on deep dive eBPF performance data

Run Chaos 
Experiment

GenAI

GenAI generate Hypothesis
and Chaos Experiment based 

on historical Experiments

“Given the scenario where the 
checkoutService API has experienced 
issues with its connection to the 
paymentService external API, leading 
to instability and potentially affecting user 
transactions, we can design a chaos 
engineering experiment to test and 
improve the resilience of this 
interaction…”

Chaos Engineering CoPilot

source: chatGPT
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Enhanced Target Architecture

Demo: AI-drive Chaos Engineering Platform

System Role 
creation

Chaos Experiment YAML is ready 
for execution. Hypothesis saved 

into the Chaos Engineering 
backlog.

Improve the result by adding 
Context based on historical 

data (observability and 
incident post-mortem 

reports).



DEMO

Photo by Alex Kondratiev on Unsplash

Starting in 3.... 2.... 1....

https://unsplash.com/@alexkondratiev?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/experiment?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText


Enhanced Target Architecture

Demo: AI-drive Chaos Engineering Platform

Target 
service

hubble-ui view



Conclusion & Takeaways

➢ AI , GenAI and eBPF can be leveraged to 
better detect chaos experiments

➢ eBPF goes beyond classical observability

➢ AI can significantly enhance threat detection 
capabilities by analyzing real-time data and 
identifying patterns indicative of security risks

➢ Start small, scale fast

Source: generated with GenAI on Bing.com
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