
Chaos Engineering in the
Fast Lane: Accelerating
Resilience with AI and eBPF

Francesco Sbaraglia

Michele Dodič

February 2024

2

Speakers

SRE Tech Lead ASG
AIOPS & Observability Lead EMEA

Accenture

Francesco Sbaraglia

SRE Co-Lead ASG
AIOPS & Observability SME

Accenture

Michele Dodič

3

Speakers

SRE Tech Lead ASG
AIOPS & Observability Lead EMEA

Accenture

Francesco Sbaraglia

4

Speakers

SRE Co-Lead ASG
AIOPS & Observability SME

Accenture

Michele Dodič

Agenda The current state of Chaos Engineering

Augmenting Chaos Engineering with eBPF

1

2

5

Augmenting Chaos Engineering with AI

Target Architecture & Live Demo

3

4

Conclusion & Takeaways5

Lessons Learned – Key Benefits for SREs and Platform Engineers

The Current State of Chaos Engineering

Bring up to speed
new SRE resources

Discover blind spots
and reduce unknown

behaviours

Improve
communication

inside the SRE team

Improve MTTD/MTTR
using new

technologies

Lessons Learned – Key Challenges & Trends

The Current State of Chaos Engineering

CHALLENGES HOW WE SOLVED IT

Complex connectivity troubleshooting of
distributed Kubernetes clusters

?

Better visibility and control during chaos
experimentation

?

Design enhanced security chaos experiments
within Kubernetes

?

Getting started with the very first Chaos
Engineering Experiment

?

Lessons Learned – Key Challenges & Trends

The Current State of Chaos Engineering

CHALLENGES HOW WE SOLVED IT

Complex connectivity troubleshooting of
distributed Kubernetes clusters

?

Better visibility and control during chaos
experimentation

?

Design enhanced security chaos experiments
within Kubernetes

?

Getting started with the very first Chaos
Engineering Experiment

?

Lessons Learned – Key Challenges & Trends

The Current State of Chaos Engineering

CHALLENGES HOW WE SOLVED IT

Complex connectivity troubleshooting of
distributed Kubernetes clusters

Introduction of eBPF

Better visibility and control during chaos
experimentation

?

Design enhanced security chaos experiments
within Kubernetes

?

Getting started with the very first Chaos
Engineering Experiment

?

What is eBPF?
„eBPF, which stands for extended Berkeley Packet Filter,
is an extraordinary technology with origins in the Linux
Kernel, that can run sandboxed programs in a privileged
context.”

source: https://ebpf.io/what-is-ebpf/

10

source: https://pixabay.com/photos/honey-bees-insects-hive-bee-hive-401238/

How does eBPF work? (I)

Apps

Storage Network Pod Container

Hardware

File
Descriptor

Network
Device

VFS

Block Dev

Socket

TCP/IP

Syscall

Process

Micro
services

Observability

Networking

User Space

execve() read() write() sendmsg() recvmsg()

BPF Programs

Kernel

eBPF makes the kernel programmable

How does eBPF work? (I)

Apps

Storage Network Pod Container

Hardware

File
Descriptor

Network
Device

VFS

Block Dev

Socket

TCP/IP

Syscall

Process

Micro
services

Observability

Networking

User Space

execve() read() write() sendmsg() recvmsg()

BPF Programs

Kernel

eBPF makes the kernel programmable

How does eBPF work? (I)

Apps

Storage Network Pod Container

Hardware

File
Descriptor

Network
Device

VFS

Block Dev

Socket

TCP/IP

Syscall

Process

Micro
services

Observability

Networking

User Space

execve() read() write() sendmsg() recvmsg()

BPF Programs

Kernel

eBPF makes the kernel programmable

How does eBPF work? (I)

Apps

Storage Network Pod Container

Hardware

File
Descriptor

Network
Device

VFS

Block Dev

Socket

TCP/IP

Syscall

Process

Micro
services

Observability

Networking

User Space

execve() read() write() sendmsg() recvmsg()

BPF Programs

Kernel

eBPF makes the kernel programmable

How does eBPF work? (I)

Apps

Storage Network Pod Container

Hardware

File
Descriptor

Network
Device

VFS

Block Dev

Socket

TCP/IP

Syscall

Process

Micro
services

Observability

Networking

User Space

execve() read() write() sendmsg() recvmsg()

BPF Programs

Kernel

➢ eBPF tools instrument
the system without any
app or config changes

➢ The kernel is with eBPF like
the Big Brother now.
It sees everything!

eBPF makes the kernel programmable

How we technically load the eBPF program into the kernel?

How does eBPF work? (II)

Python code that compiles my eBPF program:

#!/usr/bin/python3
from bcc import BPF

program = eBPF_PROGRAM

b = BPF(text=program)
syscall = b.get_syscall_fnname("execve")
b.attach_kprobe(event=syscall, fn_name="hello")

b.trace_print()

Every time a new program runs on this virtual machine,
the hello()eBPF program will be triggered.

source: https://ebpf.io/what-is-ebpf/

Info about process that
called execvesyscall

source: https://ebpf.io/what-is-ebpf/

eBPF Hello World

Improved Chaos Experimentation observability: eBPF programs can be aware of everything

Augmenting Chaos Engineering with eBPF

E2E
Mission Control

CI/CD
pipeline

Kubernetes

Cloud
Native

my-app.yaml

Containers:
-name: my-app
…
-name: my-app-init
...

User space

container

pod

kernel

create
containers

access
file

networking

kernel

userspace

pods

➢ eBPF Programs can be aware of everything,
we can now reproduce any disruptive application
and platform behaviours.

We can see much more in Production!

container

Chaos Engineering
platform

k8s node

Lessons Learned – Key Challenges & Trends

The Current State of Chaos Engineering

CHALLENGES HOW WE SOLVED IT

Complex connectivity troubleshooting of
distributed Kubernetes clusters

Introduction of eBPF

Better visibility and control during chaos
experimentation

eBPF data can be leveraged to generate
events and metrics, ?ich can be used as the
‘Emergency Stop Button‘

Design enhanced security chaos experiments
within Kubernetes

?

Getting started with the very first Chaos
Engineering Experiment

?

Lessons Learned – Key Challenges & Trends

The Current State of Chaos Engineering

CHALLENGES HOW WE SOLVED IT

Complex connectivity troubleshooting of
distributed Kubernetes clusters

Introduction of eBPF

Better visibility and control during chaos
experimentation

eBPF data can be leveraged to generate
events and metrics, ?ich can be used as the
‘Emergency Stop Button‘

Design enhanced security chaos experiments
within Kubernetes

?

Getting started with the very first Chaos
Engineering Experiment

?

Lessons Learned – Key Challenges & Trends

The Current State of Chaos Engineering

CHALLENGES HOW WE SOLVED IT

Complex connectivity troubleshooting of
distributed Kubernetes clusters

Introduction of eBPF

Better visibility and control during chaos
experimentation

eBPF data can be leveraged to generate
events and metrics, which can be used as the
‘Big Red Stop Button‘

Design enhanced security chaos experiments
within Kubernetes

?

Getting started with the very first Chaos
Engineering Experiment

?

Improved security context-awareness on a more Cloud-Native level

Augmenting Chaos Engineering with eBPF

Benefits?

➢ eBPF does not need any app changes

➢ eBPF can see all activities on the node

➢ eBPF is applied to enable security
observability

➢ eBPF data can be used to generate
metrics & events, which are used as
input for our AI prediction

source: https://pixabay.com/photos/bees-insects-macro-honey-bees-4126065/

Lessons Learned – Key Challenges & Trends

The Current State of Chaos Engineering

CHALLENGES HOW WE SOLVED IT

Complex connectivity troubleshooting of
distributed Kubernetes clusters

Introduction of eBPF

Better visibility and control during chaos
experimentation

eBPF data can be leveraged to generate
events and metrics, which can be used as the
‘Big Red Stop Button‘

Design enhanced security chaos experiments
within Kubernetes

?

Getting started with the very first Chaos
Engineering Experiment

?

Lessons Learned – Key Challenges & Trends

The Current State of Chaos Engineering

CHALLENGES HOW WE SOLVED IT

Complex connectivity troubleshooting of
distributed Kubernetes clusters

Introduction of eBPF

Better visibility and control during chaos
experimentation

eBPF data can be leveraged to generate
events and metrics, which can be used as the
‘Big Red Stop Button‘

Design enhanced security chaos experiments
within Kubernetes

?

Getting started with the very first Chaos
Engineering Experiment

?

Lessons Learned – Key Challenges & Trends

The Current State of Chaos Engineering

CHALLENGES HOW WE SOLVED IT

Complex connectivity troubleshooting of
distributed Kubernetes clusters

Introduction of eBPF

Better visibility and control during chaos
experimentation

eBPF data can be leveraged to generate
events and metrics, which can be used as the
‘Big Red Stop Button‘

Design enhanced security chaos experiments
within Kubernetes

eBPF helps to design new Security Chaos
experiments

Getting started with the very first Chaos
Engineering Experiment

?

Typical attacking surface

Potential security k8s vulnerabililties

Top 3 vulnerabilities for Kubernetes attacks:

➢ Misconfigured Container
➢ Unintentional Cluster Misconfiguration
➢ Malicious Container Image

What can we expect from a cyber attack ?

➢ Run another instance of kubelet on the same nodes
➢ Privileges pods
➢ Host network-enabled pod network direct attack
➢ Malicious webhook
➢ Pod network can be used for exploitation
➢ Using insecure root mounts
➢ Kubernetes cronjob/jobs
➢ Pod default tokens
➢ Kubernetes External-IPs

Kubernetes Cluster

Master Node

etcd

Control-plane components

Worker Node
kubelet

Pod

Container Application

Access via kubelet API

• Intercept/modify/inject
application traffic

• Exploit vulnerability
in application code

• Escape container to host
through vulnerability or
volume mount

• Intercept/modify/inject
control-plane traffic

• Access via kubernetes
API or proxy

Access to machines/VMs

Access to etcd API

source: https://www.oreilly.com/library/view/kubernetes-

security/9781492039075/ch01.html

Leverage Cilium’s Advanced Network Policy

Advanced Chaos Experiments with eBPF

Isolate pods

Create better network
Experiments

Service Mesh
Experiments

Multi-Cluster
Experiments

Benefits

Cilium EBPF

eBPF removes the need to kill or delete the pod and to
deploy any new tools.

Network resource
exhaustion

Node IO resource
exhaustion

Pod resource
exhaustion

Future proof

source: https://cilium.io/use-cases/network-policy/

Lessons Learned – Key Challenges & Trends

The Current State of Chaos Engineering

CHALLENGES HOW WE SOLVED IT

Complex connectivity troubleshooting of
distributed Kubernetes clusters

Introduction of eBPF

Better visibility and control during chaos
experimentation

eBPF data can be leveraged to generate
events and metrics, which can be used as the
‘Big Red Stop Button‘

Design enhanced security chaos experiments
within Kubernetes

eBPF helps to design new Network and
Security Chaos Experiments

Getting started with the very first Chaos
Engineering Experiment

?

Lessons Learned – Key Challenges & Trends

The Current State of Chaos Engineering

CHALLENGES HOW WE SOLVED IT

Complex connectivity troubleshooting of
distributed Kubernetes clusters

Introduction of eBPF

Better visibility and control during chaos
experimentation

eBPF data can be leveraged to generate
events and metrics, which can be used as the
‘Big Red Stop Button‘

Design enhanced security chaos experiments
within Kubernetes

eBPF helps to design new Network and
Security Chaos Experiments

Getting started with the very first Chaos
Engineering Experiment

?

Lessons Learned – Key Challenges & Trends

The Current State of Chaos Engineering

CHALLENGES HOW WE SOLVED IT

Complex connectivity troubleshooting of
distributed Kubernetes clusters

Introduction of eBPF

Better visibility and control during chaos
experimentation

eBPF data can be leveraged to generate
events and metrics, which can be used as the
‘Big Red Stop Button‘

Design enhanced security chaos experiments
within Kubernetes

eBPF helps to design new Network and
Security Chaos Experiments

Getting started with the very first Chaos
Engineering Experiment

Chaos Engineering CoPilot powered by
GenAI

eBPF goes beyond traditional networking in enhancing the Chaos Engineering landscape

Augmenting Chaos Engineering with AI and GenAI

observe events

filter events

alerts

eBPF data

What is the cause?
What is affecting?

Predicable behaviour?

SRE

AI-Driven recognition Benefits

❑ Discover unknown patterns

❑ Analyze App behaviour

❑ Predict based on historical attacks

Generate better Hypothesis based on deep dive eBPF performance data

Run Chaos
Experiment

GenAI

GenAI generate Hypothesis
and Chaos Experiment based

on historical Experiments

“Given the scenario where the
checkoutService API has experienced
issues with its connection to the
paymentService external API, leading
to instability and potentially affecting user
transactions, we can design a chaos
engineering experiment to test and
improve the resilience of this
interaction…”

Chaos Engineering CoPilot

source: chatGPT

Lessons Learned – Key Challenges & Trends

The Current State of Chaos Engineering

CHALLENGES HOW WE SOLVED IT

Complex connectivity troubleshooting of
distributed Kubernetes clusters

Introduction of eBPF

Better visibility and control during chaos
experimentation

eBPF data can be leveraged to generate
events and metrics, which can be used as the
‘Big Red Stop Button‘

Design enhanced security chaos experiments
within Kubernetes

Cilium/eBPF helps to create Security Chaos
experiments

Getting started with the very first Chaos
Engineering Experiment

Chaos Engineering CoPilot powered by
GenAI

Enhanced Target Architecture

Demo: AI-drive Chaos Engineering Platform

System Role
creation

Chaos Experiment YAML is ready
for execution. Hypothesis saved

into the Chaos Engineering
backlog.

Improve the result by adding
Context based on historical

data (observability and
incident post-mortem

reports).

DEMO

Photo by Alex Kondratiev on Unsplash

Starting in 3.... 2.... 1....

https://unsplash.com/@alexkondratiev?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/experiment?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Enhanced Target Architecture

Demo: AI-drive Chaos Engineering Platform

Target
service

hubble-ui view

Conclusion & Takeaways

➢ AI , GenAI and eBPF can be leveraged to
better detect chaos experiments

➢ eBPF goes beyond classical observability

➢ AI can significantly enhance threat detection
capabilities by analyzing real-time data and
identifying patterns indicative of security risks

➢ Start small, scale fast

Source: generated with GenAI on Bing.com

Thank You

	Default Section
	Slide 1: Chaos Engineering in the Fast Lane: Accelerating Resilience with AI and eBPF
	Slide 2: Speakers
	Slide 3: Speakers
	Slide 4: Speakers
	Slide 5: Agenda
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: What is eBPF?
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Thank You

