
Optimizing Backend API
Performance
Presented by:

Garima Agarwal
Application Programmer V at Bank of America

https://gamma.app/?utm_source=made-with-gamma

Our Agenda Today

1 Why API Performance Matters

2 Common API Performance Bottlenecks

3
Pagination: Handling Large Datasets Efficiently

4 Asynchronous Logging: Enhancing Performance

5 Caching: Reducing Database Load

6 Payload Compression: Improving Network Efficiency

7 Connection Pooling: Optimizing Database Interactions

8 Key Takeaways

https://gamma.app/?utm_source=made-with-gamma

Why API Performance Matters?

1 Better User Experiences
Ensures smooth and responsive
applications.

2 Scalability and
Responsiveness
Handles increased traffic with
efficiency.

3 More Reliable
Results in dependable API
performance.

4 Fewer Resource Utilization
Consumes less server power for optimal performance.

5 Business Impact
Drives revenue and boosts customer satisfaction.

https://gamma.app/?utm_source=made-with-gamma

Common API Performance Bottlenecks

Slow database queries
Poor indexing, unoptimized
joins

High latency
In logging & processing

Large payloads
Uncompressed

Excessive connections
To database

Redundant requests
From client

Lack of caching
No caching mechanisms

https://gamma.app/?utm_source=made-with-gamma

Pagination: Handling Large Datasets Efficiently
Why Pagination?

Avoids large dataset retrievals

Reducing response times

Techniques:

Offset-based pagination

Cursor-based pagination (real-time applications)

Page-based pagination

Example (Spring Boot Code)

@GetMapping("/products")
public Page<Product> getAllProducts(Pageable pageable) {
 return productRepository.findAll(pageable);
}

https://gamma.app/?utm_source=made-with-gamma

Asynchronous Logging: Enhancing Performance
Problem with Synchronous Logging

Blocks execution for each log write

Increases response time

Solution: Use Async Logging

Logs are written in memory and flushed periodically

https://gamma.app/?utm_source=made-with-gamma

Caching: Reducing Database Load
Before Caching

Each request hits the database

Slower response times

Higher database load

After Caching (Redis Example)

Reduced database hits & speeds up responses

In-memory data retrieval

https://gamma.app/?utm_source=made-with-gamma

Payload Compression: Improving Network Efficiency
Why Compress Payloads?

Reduces bandwidth usage

Faster response times

Improved user experience

Compression Techniques

Gzip

Brotli

HTTP/2 multiplexing

Configuration (Spring Boot)

server:
 compression:
 enabled: true
 mime-types:
application/json,application/xml,text/html,text/xml,text/plain
 min-response-size: 1024

https://gamma.app/?utm_source=made-with-gamma

Connection Pooling: Optimizing Database Interactions
Why Connection Pooling?

Reduces overhead of opening/closing database connections.

Best Practices

Use HikariCP for performance.

Tune pool size based on traffic.

Example (HikariCP Config):

spring:
 datasource:
 hikari:
 maximum-pool-size: 10
 minimum-idle: 5
 idle-timeout: 30000

https://gamma.app/?utm_source=made-with-gamma

Key Takeaways

1 Monitor & Profile APIs
Use tools like Prometheus and
Grafana to identify bottlenecks.

2 Implement Caching &
Compression
Reduce bandwidth usage and
improve response times.

3 Optimize Database
Queries & Connection
Pooling
Enhance database interaction
efficiency.

4 Leverage Async Processing
Handle heavy tasks such as logging.

5 Test & Scale Proactively
Use testing to prepare APIs for peak loads.

https://gamma.app/?utm_source=made-with-gamma

Thank You
LinkedIn: https://www.linkedin.com/in/garima24agarwal/

https://www.linkedin.com/in/garima24agarwal/
https://gamma.app/?utm_source=made-with-gamma

