Bringing Al to the Edge: How ML is Powering the Future of IoT

By Gayathri Jegan Mohan Software Engineer at Microsoft | Azure IoT

What is Al at the Edge mean?

- In IoT, usually the ML models are used deployed and managed in cloud.
- But with Edge Al, one can deploy models locally on the edge devices and reduce latency.
- Local inferencing helps in real time processing
- Also solve privacy issues of moving data to cloud.

Examples of Edge Al

- A surveillance camera using Al to detect intrusions or license plates on-device.
- A manufacturing robot detecting defects in real-time without sending every image to the cloud.
- A smart speaker recognizing voice commands locally for faster response and privacy.

Why Edge Al is better than cloud Al?

- Latency real time response without sending data to cloud
- Bandwidth minimal data sent over network
- Security Data processed locally without cloud risks
- Reliability operates even with limited or no network
- **Energy** reduces energy usage

By 2025, 75% of enterprise data will be processed at the edge, revolutionizing Al-powered IoT.

Challenges of Edge Al -(1)

Resources

Model Deployment & Updates

Security & Privacy

Limited Computing Resources

- Low processing power compared to GPUs/TPUs
- Limited memory and storage
- Power supply (battery operated)
- Complex models cannot run

Model Deployment and updates

- Hard to push updates to so many edge devices at onces
- Risk of version mismatch

Security and Privacy

- Devices are deployed in public environment prone to malware attacks
- Need secure boot, secure protocol standards

Challenges of Edge AI -(2)

Connectivity Model Optimization Issues & Compression

Observability & Debugging

Hardware Diversity

Connectivity Issues

- No network sometimes
- Sync to cloud is hard

Model optimization and compression

- Models have to be lightweight
- Accuracy may be comprised with shrinking models

Observability

- Hard to monitor performance, failures
- Need simple loggings or simple tools to send data to cloud

Hardware Diversity

- So many different devices from different vendors
- Different OS/ runtime

Best Practices of ML models at Edge

Deploying ML Models on IoT Devices at Scale

Updating Models on Edge Devices

Model Compression Techniques

Using Cloud-Managed Al Pipelines

Practice #1 Deploying Models At Edge

Deploying ML Models on loT Devices at Scale When deploying models across thousands of edge devices, it's critical to ensure:

- Model portability: Use formats like ONNX or TFLite that work across different hardware.
- Hardware abstraction: Target accelerators (e.g., NVIDIA Jetson, Intel Movidius, ARM NPUs) using unified runtimes like OpenVINO or TensorRT.
- Containerization: Package models with inference runtimes in Docker containers to ensure consistent execution.

Practice 2# Updating Models on Edge Devices

Updating Models on Edge Devices Frequent updates are required to Improve accuracy, Patch vulnerabilities, Adapt to environmental drift

Some best practices are

- OTA (Over-the-Air) updates with version control
- A/B testing or shadow deployment to evaluate new models without full rollout
- Digital twin simulation to pre-test updates in a cloud replica of your edge environment

Practice 3# Model Compression Techniques

Model Compression Techniques

Quantization

- Reduces model precision (e.g., from 32-bit float to 8-bit integer)
- Smaller size model so faster inference

Pruning

- Removes insignificant weights or neurons from the model
- Speeds up computation

Knowledge Distillation

- A small "student" model learns to mimic larger "teacher" model
- High efficiency with good accuracy

Practice #4 Cloud Managed Al pipelines

Using Cloud-Managed Al Pipelines

Rather than manually managing model lifecycles, modern systems use **cloud-based ML Ops** (Machine Learning Operations) pipelines. These provide:

- Training and retraining on the cloud with updated datasets
- CI/CD pipelines to automate testing and deployment
- **Telemetry collection** from edge to continuously improve models
- Examples: Azure ML with IoT integration,
 AWS SageMaker Edge Manager, Google
 Vertex AI + Edge TPU

Deploying Example

Walmart for deploying models at Scale

- What they did: Walmart deployed thousands of cameras with Al models in their retail stores to monitor inventory levels, shelf placement, and customer behavior.
- How: Used compact edge servers (NVIDIA Jetson-based) and computer vision models optimized via TensorRT.
- Result: Reduced stockouts and optimized restocking schedules, improving operational efficiency across hundreds of locations.

Update Models Example

Tesla Over-the-Air (OTA)
Model Updates

What they did: Tesla routinely pushes Al updates (e.g., Autopilot vision and driving behavior models) to cars globally.

How: Uses secure OTA pipelines to validate and deploy updates with rollback capabilities.

Result: Enables incremental model improvements without requiring service center visits, and supports shadow mode testing before full rollout.

Model Compression

Google - MobileNet on Android Devices

What they did: Google developed the MobileNet family—lightweight models designed for mobile inference like image classification or object detection.

How: Used quantization and pruning to reduce model size while retaining accuracy.

Result: Enabled real-time Al features like Google Lens and real-time translation on phones without internet dependency.

Cloud Managed Al Pipeline Example

Siemens Predictive
Maintenance in Factories

What they did: Siemens deployed Al across factory floors for predictive maintenance on CNC machines and motors.

How: Used Azure IoT + Azure ML pipelines to train models in the cloud, then deploy inference versions to edge gateways.

Result: Reduced machine downtime by up to 30%, while using the cloud to continuously retrain models with edge-collected telemetry.

Thank you!