
www.accessibilityoz.com
@accessibilityoz

Accessible JavaScript: Easier than you think!

Agenda – Types of JavaScript functionality

1. Binding functionality to existing interactive
components, such as links, buttons and text
fields.

2. Non-interactive functionality that presents
information.

3. Creating custom components that are both
interactive and informative.

Agenda – Ten accessibility principles
1. All functionality must take a form that can be interpreted

as text
2. All functionality must be accessible to all input devices
3. Information and structure can be programmatically

determined
4. A meaningful sequence and logical focus order is

maintained
5. Instructions do not rely on sensory characteristics or

nonsensical characters

Agenda – Ten accessibility principles
6. Timed activity can be controlled
7. Provide mechanisms to help people find and interact with

content correctly
8. Do not cause a change of context or content unexpectedly
9. Identify components consistently
10. Identify and describe errors and error suggestions in text

gian@accessibilityoz.com
accessibilityoz.com

JavaScript
Factsheet
www.accessibilityoz.com
/factsheets/javascript/

gian@accessibilityoz.com
accessibilityoz.com

Types of
JavaScript
functionality

Type 1

Binding functionality to existing interactive
components, such as links, buttons and text fields.
Assistive technologies can derive information from their
attributes and text; for example, a dynamic menu would be
made using links organised into nested lists, in which the
menu levels are denoted by the hierarchy, and by the use of
structural labels around each top-level link

Type 2

Non-interactive functionality that presents
information.
This must be implemented in such a way that the information
can be derived from associated text; for example, a visual
progress-meter would also show a % figure, or JavaScript
might be used to identify and highlight form validation errors.

Type 3

Creating custom components that are both interactive
and informative.
These components must be implemented using elements that
are already understood by assistive technologies, so that their
content and interactions can be programmatically determined;
for example, a calendar widget would have a LABEL to
describe it and a button to trigger it, while the calendar itself
would be made using TABLE markup, which assistive
technologies can understand and interpret as structured text.

gian@accessibilityoz.com
accessibilityoz.com

Accessibility
principles

JavaScript

Principle 1
All functionality must take a form that can be

interpreted as text

Principle 1: Text alternatives

People with disabilities may rely on assistive
technologies, such as a screen reader, a Braille reader,
or a speaking browser. These technologies represent all
information as structured text.

If visual information has no text equivalent, assistive
technologies will not be able to relay that information
to the user.

Principle 1: Text alternatives

If interactive components do not have a descriptive
label, people who use assistive technologies, or who
have a cognitive disability, may not understand what it
is.

gian@accessibilityoz.com
accessibilityoz.com

Accessibility
Basics webinar
www.youtube.com/watch
?v=ysTDAu2zViM

gian@accessibilityoz.com
accessibilityoz.com

Accessibility
Basics article

tinyurl.com/a11y-basics

CAPTCHA

Example: CAPTCHA

gian@accessibilityoz.com
accessibilityoz.com

Want to learn
more?

tinyurl.com/2025-captcha

Example: CAPTCHA

Visually-dynamic
content

Examples: Visually-dynamic content

Visually-dynamic information (such as a progress meter)
should have a text equivalent

Incorrect example: http://jqueryui.com/progressbar/

Correct example: Psalaciak, JS_G_A1

http://jqueryui.com/progressbar/
http://s3.envato.com/files/2526201/index.html
http://static.accessibilityoz.com.au/bom-js/JS_G_A1.html

Image buttons

Examples: Image buttons

Form image button ALT attributes must be correct

Correct example:

Incorrect example:

Complex content

Examples: Long descriptions for non-text content

Functionality that can't be made accessible must have a long
description that provides the same information

Correct example: JS_G_A2

http://static.accessibilityoz.com.au/bom-js/JS_G_A2.html

Text alternative requirements

 Image buttons must have a valid ALT attribute
 Any images conveying information must have a valid

ALT attribute
 If the Submit button is an image then it must have

an ALT attribute
 CAPTCHAs must be multiple sensory modalities
 Complex systems must have a valid long description

gian@accessibilityoz.com
accessibilityoz.com

Interactive Maps
Factsheet
www.accessibilityoz.com
/factsheets/interactive-
maps/

Principle 2
All functionality must be accessible to all input devices

What are input devices?

• Mouse
• Keyboard
• Touchscreen on a mobile device or laptop

Assistive tech that mimic input devices

• Joystick (mimicking a mouse)
• Onscreen keyboard (mimicking a keyboard)
• External keyboard on a mobile device

(mimicking a keyboard)
• Thumb switch (mimicking a keyboard)
• Headwand (mimicking a mouse)

Principle 2: Input device accessiblity

Assistive technologies are usually controlled with the
keyboard, rather than with a mouse or pointing device,
and there are also many people who are simply unable
to use a mouse or trackpad, because of a motor
impairment.

Principle 2: Input device accessiblity

If interactive content can’t be operated with the
keyboard, it will be entirely inaccessible to people who
can’t use a mouse or pointing device.

There are also people entirely reliant on other input
devices; so it is essential that all the site functions
using only one type of input device.

Keyboard

Using the keyboard

1. Use TAB, ESC or arrow keys to exit, or
2. Document the feature needed to exit, prior to

entering application
3. Must be able to TAB from start to finish

Example: Keyboard trap

Interactive content should be accessible to the keyboard,
using common keystrokes like Tab, Enter and Arrow Keys

gian@accessibilityoz.com
accessibilityoz.com

Keyboard
factsheet

www.accessibilityoz.com
/factsheets/keyboard/

gian@accessibilityoz.com
accessibilityoz.com

Keyboard focus
video
www.accessibilityoz.com
/resources/videos/
keyboard-focus/

Examples: Keyboard focus indicator

Do not use events to restrict keyboard access or remove focus
indication

Incorrect example: onfocus=“this.blur()”

Correct example: Disability Rights Texas

https://disabilityrightstx.org/en/home/

Examples: Dynamic menus

Dynamic menus should be fully accessible to the keyboard,
using Tab and Arrow Keys

Correct example: AccessibilityOz, JS_N_A1

https://www.accessibilityoz.com/
http://static.accessibilityoz.com.au/bom-js/JS_N_A1.html

Keyboard requirements

 There must be no keyboard traps
 When creating a modal window / dialog box focus

must remain within the modal window / dialog box
 Dynamic menus must be fully keyboard accessible
 Ensure that mouse-only functionality has a keyboard

equivalent
 Ensure everything has a keyboard focus indicator

Touchscreen

gian@accessibilityoz.com
accessibilityoz.com

Mobile
Accessibility
Guidelines
www.accessibilityoz.com
/resources/mobile-
testing/

Principle 3
Information and structure can be programmatically

determined

Principle 3: Information and structure

If scripting is used to implement standard functionality,
assistive technologies will not understand what it is,
and will therefore not be able to describe it or provide
the appropriate keystrokes.
If custom widgets are built using non-semantic markup,
assistive technologies will similarly fail to understand
what they are.

Principle 3: Information and structure
When content requires user input, labels or instructions should
be provided to assist the user with completing their task, and
to minimise mistakes made:
• If labels and instructions are not provided and associated

with a form input, a blind user will not know what
information to enter.

• Similarly, labels and instructions that are not visually
located closely to a form input can prevent users of screen
magnifiers from seeing this information.

Principle 3: Information and structure
…
• Labels and instructions that do not give examples of

expected user input can reduce the likelihood of users with
cognitive, language and learning disabilities entering the
correct information.

• Keyboard users may submit incomplete forms if required
fields are not labelled; trying to find the incomplete input is
a tiresome task when information is not provided to assist.

Labels and
fieldsets

Examples: Field Labels

Fields must have an associated and coded field label.

Correct example: Amazon

https://www.amazon.com/ap/signin?_encoding=UTF8&openid.assoc_handle=amazon_checkout_us&openid.claimed_id=http://specs.openid.net/auth/2.0/identifier_select&openid.identity=http://specs.openid.net/auth/2.0/identifier_select&openid.mode=checkid_setup&openid.ns=http://specs.openid.net/auth/2.0&openid.ns.pape=http://specs.openid.net/extensions/pape/1.0&openid.pape.max_auth_age=0&openid.return_to=https://www.amazon.com/gp/buy/signin/handlers/continue.html?ie%3DUTF8%26eGCApp%3D%26hasWorkingJavascript%3D0%26isEGCOrder%3D0%26isFresh%3D%26oldCustomerId%3D0%26oldPurchaseId%3D%26preInitiateCustomerId%3DA3ODZ6P4O44EJD%26purchaseInProgress%3D%26siteDesign%3D&pageId=amazon_checkout_us&showRmrMe=1&siteState=isRegularCheckout.1|IMBMsgs.|isRedirect.1&suppressSignInRadioButtons=0

FIELDSET requirements

FIELDSETs are for grouping fields only.
There are three ways
fields can be related:

1. They belong in one
particular group

FIELDSET requirements

2. They don’t make sense without the other fields

3. They only make sense in conjunction with an
overarching heading

gian@accessibilityoz.com
accessibilityoz.com

Forms factsheet

www.accessibilityoz.com
/factsheets/forms/

gian@accessibilityoz.com
accessibilityoz.com

Forms videos

www.accessibilityoz.com
/videos/

Accordions

Examples: Bypass blocks

Use an expandable/collapsible menu to bypass blocks of
content

Correct example: TAC forms, JS_G_A8

http://www.tac.vic.gov.au/claims/forms-and-brochures-clients/forms-for-clients
http://static.accessibilityoz.com.au/bom-js/JS_G_A8.html

gian@accessibilityoz.com
accessibilityoz.com

Accordion
Pattern

tinyurl.com/a11y-
accordion

Principle 4
A meaningful sequence and logical focus order is

maintained

Principle 4: Sequence and focus order
The visual reading order of form content should be presented
in a meaningful and logical sequence i.e. left to right and top
to bottom (assuming a left-to-right language).
Screen readers will read form components in the order that it
appears in the source mark-up. When meaningful sequence is
not maintained, form content may be displayed incorrectly
when presented in alternative formats by assistive
technologies.

Principle 4: Sequence and focus order
Users of assistive technologies sometimes do not have access to the
entire page at once, so changes before the user’s current focus or
elsewhere on the page may be missed.
Navigating with the keyboard is a one-dimensional process, and users
who rely on speech output can only hear one thing at a time, so
content which is not in a logical order is harder to comprehend and
use. When a keyboard user presses a button and new interactive
content appears, they’ll expect that content to be immediately next in
the Tab order, not to have to jump around the page to get to it.

Why sequence is important
Websites are accessed by a variety of devices
including mouse, keyboard, touchscreen, switch,
joystick and assistive technologies such as screen
readers and magnifiers. When the source order,
keyboard focus order and visual reading order of
a webpage are inconsistent with each other this
can greatly impact their ability to navigate and
access a web page effectively.

Three orders
Source order
The order that the underlying HTML or
other mark-up is written.

Keyboard focus order
The order of interactive page elements,
such as links and form controls, when
accessed by the keyboard i.e. the order
in which items receive keyboard focus.

Visual reading order
The logical and intuitive order in which a
sighted user naturally reads the page
content. This is generally left to right and
top to bottom – all content should be
presented in a meaningful sequence so
that any relationship within the data is
clear.

gian@accessibilityoz.com
accessibilityoz.com

Source Order
factsheet

www.accessibilityoz.com
/factsheets/source-order/

gian@accessibilityoz.com
accessibilityoz.com

Source order vs
Display Order vs
Keyboard Focus
Order video
tinyurl.com/three-orders

Visual reading order

Important information should
never be after a Submit button

Visual reading order – Important information

Logical focus
order

Logical focus order

Insert dynamic content into the DOM immediately following its trigger
element
Correct example: JS_C_A9

Use scripting to re-order content in the DOM

Incorrect example: Scripting to re-order DOM
Correct example: Sortable list, JS_C_A11

http://static.accessibilityoz.com.au/bom-js/JS_C_A9.html
http://static.accessibilityoz.com.au/maw/js-reorder.html
http://static.accessibilityoz.com.au/maw/js-reorder.html
http://static.accessibilityoz.com.au/maw/js-reorder.html
http://www.brothercake.com/scripts/dbx/list.html
http://static.accessibilityoz.com.au/bom-js/JS_C_A11.html

Correct: Focus order



Principle 5
Instructions do not rely on sensory characteristics or

nonsensical characters

Principle 5: Illegible instructions

When sensory characteristics (colour, shape and
location) or nonsensical characters (asterisks,
dashes etc) are used instead of text, users of
screen readers may not be able to understand the
meaning of the content. Often these are ignored
by the screen reader which means information is
omitted completely.

Fields

Incorrect: Mandatory fields



Principle 6
Timed activity can be controlled

Principle 6: Timed activity
Users of assistive technology often take a lot longer to read a
page or undertake required functionality, either because of a
cognitive disability, or because they can only focus on a few
words at once, or because it takes longer to listen to
synthesized speech than to visually read. It would be
confusing and disorientating for people if content were to
change while they were reading it.

Principle 6: Timed activity

Continual animation or flickering effects may trigger a seizure
in someone who has photosensitive epilepsy. It’s also more
difficult for someone with a cognitive disability to ignore these
effects, which makes the actual content harder to focus on.

Flickering

Pokemon Shock

Electric Soldier Porygon is the 38th episode of the
anime series Pokemon. It was broadcast in Japan
on December 16, 1997 on 37 stations to 4.6
million households.
There were repetitive visual effects (flashing red
and blue lights) – effectively strobe lights at a
rate of 12 Hz for six seconds

Pokemon Shock

The most common
side effects:
• Blurred vision
• Headaches
• Dizziness
• Nausea

The most serious side
effects:
• Seizures
• Blindness
• Convulsions
• Loss of consciousness
• Breathing difficulties

4. No flashing
• Flashing images, especially those with red, should not

flicker faster than three times per second. If the image does
not have red, it still should not flicker faster than five times
per second.

• Flashing images should not be displayed for a total duration
of more than two seconds.

• Stripes, whirls and concentric circles should not take up a
large part of the television screen.

Flickering

Use the PEAT tool:

https://trace.umd.edu/peat/

https://trace.umd.edu/peat/

Incorrect: Flickering

Kickstarter campaign - LiFX



https://www.kickstarter.com/projects/limemouse/lifx-the-light-bulb-reinvented/description
https://www.kickstarter.com/projects/limemouse/lifx-the-light-bulb-reinvented/description
https://www.kickstarter.com/projects/limemouse/lifx-the-light-bulb-reinvented/description

Time limits

Timed activity

Warn the user when a time-limit is about to expire, and
provide a mechanism for extending it

Correct example: JS_C_A5

http://static.accessibilityoz.com.au/bom-js/JS_C_A5.html

Incorrect: Timing



Movement

Timed activity

Use scripting to scroll content and provide a mechanism to pause it

Correct example: AccessibilityOz

Use scripting to create a blinking animation that stops in 5 seconds

Correct example: JS_C_A8

http://www.accessibilityoz.com/
https://static.accessibilityoz.com.au/bom-js/JS_C_A8.html

Incorrect: Pause, stop, hide



Correct: Pause, stop, hide



Alternatives to
moving content

Timed activity

Use scripting to create an alternative, static version of
scrolling content

Correct example: JS_C_A6-A7

http://static.accessibilityoz.com.au/bom-js/JS_C_A6-A7.html
http://static.accessibilityoz.com.au/bom-js/JS_C_A6-A7.html
http://static.accessibilityoz.com.au/bom-js/JS_C_A6-A7.html

Timed redirects

2.2.2: Pause, stop, hide
 Timed server redirects not allowed
 Non-timed server redirects ok
 Animated GIF must stop moving in 5 seconds
 Do not use BLINK
 Stop by:

• Stop moving content with user agent stop button or ESC key; and/or
• Reloading page stops the blinking; and/or
• Link to stop content.

Principle 7
Provide mechanisms to help people find and interact

with content correctly

Principle 7: Finding & interacting with content
People rely on mechanisms to find information that are most
suited to their needs. On a large website, if a search is not
provided, blind users may find it cumbersome to tab through a
large navigation block, or visually impaired users may find it
difficult and confusing when doing the same with a screen
magnifier or screen reader. Providing a search benefits
everyone by allowing information be to found quickly.

Principle 7: Finding & interacting with content
In addition, it may be obvious to you how a system works, but
that’s not always the case for everyone! And for people with
disabilities, often contextual information (like imagery) may
not be available, or an alternative presented. Therefore, it is
important to always provide instructions on how to use
unusual content or functionality, or on how to use functionality
that does not operate as the user expects.

Instructions

Example: Instructions

Complex content should
have instructions

Non-text content (JavaScript)

Functionality that can't be presented in text must be
descriptively identified

Correct example: JS_G_A3

http://static.accessibilityoz.com.au/bom-js/JS_G_A3.html

Principle 8
Do not cause a change of context or content

unexpectedly

Principle 8: Change in content and context
Navigating a document or inputting data into a form should be
a predictable experience for all users. People with visual,
cognitive or motor impairments may become disoriented if
changes in context or content occur unexpectedly, such as a
new window popping up or the focus being moved to another
form component. The user may be not aware that a change
has occurred as a result of their actions if they were not
adequately informed or did not initiate the change.

New windows

Initiated on user request

Use an actuation event, rather than focus or load event, to
programmatically open links or trigger popup windows
Incorrect example: JS_N_A2

Use progressive enhancement to open windows on user request
Correct example: JS_N_A3

http://static.accessibilityoz.com.au/bom-js/JS_N_A2.html
http://static.accessibilityoz.com.au/bom-js/JS_N_A3.html

Change on user
request

Initiated on user request

Do not use the change event of a SELECT element for navigation
Incorrect example: phpBB Forums, JS_N_A4

https://www.phpbb.com/community/viewforum.php?f=46
http://static.accessibilityoz.com.au/bom-js/JS_N_A4.html

Initiated on user request

Do not automatically refresh the page without user confirmation or
control
Correct example: JS_N_A6

http://static.accessibilityoz.com.au/bom-js/JS_N_A6.html

Incorrect: On focus

Incorrect: On focus



Correct: On input with instructions

Incorrect: On input



Principle 9
Identify components consistently

Principle 9: Consistent components

Functionality that is similar or used more than
once on a website should be labelled consistently
to create familiarity and ease of use. This
improves a user’s ability to find information or use
similar functionality on other pages without
having to relearn how.

Incorrect: Inconsistent pagination

gian@accessibilityoz.com
accessibilityoz.com

Incorrect:
Inconsistent
Contextual
help

Principle 10
Identify and describe errors and error suggestions in

text

Principle 10: Error descriptions & suggestions
When an error is detected it should be identified in text and
described in detail. Without specific information about the
error, screen reader users may believe a form is not
functioning and may abandon it altogether. Errors that are
identified with colour alone, or symbols or icons, may not be
understood or recognised by users who are blind or colour
blind. This may also be the same for users with learning or
language difficulties, or other cognitive impairments.

Principle 10: Error descriptions & suggestions
When error messages are provided, they should include
suggestions on how to correct mistakes, such as examples of
the correct user input. Without suggestions, people with visual
or motor impairments, or cognitive, language and learning
difficulties may not understand what the required input is and
may not be able to correct their mistakes.

Principle 10: Error descriptions & suggestions
After repeatedly trying to input the correct information, which can be
very tiresome; users may ultimately abandon the form altogether.
When a form is used to initiate a legal or financial commitment, or to
modify or delete user data, a step to reverse, check or confirm the user
input before submitting the form should be provided to prevent users
from making a serious mistake. Users with visual or cognitive, language
and learning difficulties may have input incorrect characters, or users
with a motor impairment may have hit incorrect keys.

Field errors

Describe input errors

Form validation should be triggered by submission, rather than individual
field events
Form validation should trigger an alert then set focus on the first invalid field
Validation error messages should be programmatically inserted directly after
the field they relate to, using functions of the DOM (and in the LABEL
element)

Incorrect example: Smashing Magazine, Validation library
Correct example: JS_F_A1-A3-A4

http://www.smashingmagazine.com/2013/04/05/how-to-sell-the-value-of-mobile-to-clients/
http://rickharrison.github.io/validate.js/
http://static.accessibilityoz.com.au/bom-js/JS_F_A1-A3-A4.html
http://static.accessibilityoz.com.au/bom-js/JS_F_A1-A3-A4.html
http://static.accessibilityoz.com.au/bom-js/JS_F_A1-A3-A4.html
http://static.accessibilityoz.com.au/bom-js/JS_F_A1-A3-A4.html
http://static.accessibilityoz.com.au/bom-js/JS_F_A1-A3-A4.html

Describe input errors
Form submission should be bound to the form's submit event, not to the submit button's click event
Incorrect example: <input type="submit" onclick="return validate(this)">
Correct example: <form action="/search" onsubmit="return validate(this)">

Do not force the focus to remain in invalid fields
Incorrect example: JS_F_A5

Where form fields require a specific format or range of values, contextual help-text can be
programmatically inserted directly after the field it relates to, using functions of the DOM (and in the
LABEL element).
Correct example: JS_F_AA1

http://static.accessibilityoz.com.au/bom-js/JS_F_A5.html
http://static.accessibilityoz.com.au/bom-js/JS_F_AA1.html

3.3.1: Error identification

Error must:
• Be in text
• Be at the relevant field
• Be included in the relevant LABEL FOR element

Incorrect: Field errors



Correct: Field errors



gian@accessibilityoz.com
accessibilityoz.com

Forms factsheet

www.accessibilityoz.com
/factsheets/forms/

gian@accessibilityoz.com
accessibilityoz.com

Forms videos

www.accessibilityoz.com
/videos/

gian@accessibilityoz.com
accessibilityoz.com

JavaScript
Factsheet
www.accessibilityoz.com
/factsheets/javascript/

In conclusion

Agenda – Types of JavaScript functionality

1. Binding functionality to existing interactive
components, such as links, buttons and text
fields.

2. Non-interactive functionality that presents
information.

3. Creating custom components that are both
interactive and informative.

Agenda – Ten accessibility principles
1. All functionality must take a form that can be interpreted

as text
2. All functionality must be accessible to all input devices
3. Information and structure can be programmatically

determined
4. A meaningful sequence and logical focus order is

maintained
5. Instructions do not rely on sensory characteristics or

nonsensical characters

Agenda – Ten accessibility principles
6. Timed activity can be controlled
7. Provide mechanisms to help people find and interact with

content correctly
8. Do not cause a change of context or content unexpectedly
9. Identify components consistently
10. Identify and describe errors and error suggestions in text

Resources

W3C ARIA APG - Patterns
• Accordion
• Alert
• Alert and Message dialogs
• Breadcrumb
• Carousel
• Checkbox
• Combobox

• Dialog (Modal)
• Slider
• Switch
• Table
• Tabs
• Toolbar
• Window Splitter
 … and many more!

www.w3.org/WAI/ARIA/apg/

W3C ARIA APG - Practices
• Landmark Regions
• Providing accessible names and descriptions
• Developing a keyboard interface
• Grid and table properties
• Communicating value and limits for range widgets
• Structural roles
• Hiding semantics with the presentation role

www.w3.org/WAI/ARIA/apg/

AccessibilityOz Factsheets

• Images
• PDF
• Video
• Interactive Maps
• HTML5
• Content

• JavaScript
• Tables
• Coding
• Keyboard
• Source Order
• Forms

www.accessibilityoz.com/factsheets/

AccessibilityOz Developer Videos

HTML:
• HTML headings
• Well-formed and valid markup
• Keyboard focus
• Source Order vs Display Order vs Keyboard Focus

Order

www.accessibilityoz.com/resources/videos/

AccessibilityOz Developer Videos
Forms:
• Explicit & implicit form

labels
• Fieldsets and legends
• Checkboxes & radio

buttons
• Required form fields

• Accessible form
instructions

• Error messages in forms
• Accessible session

timeouts

www.accessibilityoz.com/resources/videos/

AccessibilityOz Developer Videos
ARIA:
• What is ARIA and why use it?
• How not to use ARIA
• ARIA landmark roles
• aria-labelledby vs. aria-describedby vs. aria-label
• Using aria-live

www.accessibilityoz.com/resources/videos/

Mobile Accessibility Testing Guidelines

• Guidelines on both Native App and Mobile Site
• Information on how to choose devices,

capture errors, assistive technologies
• Step-by-step instructions with examples

www.accessibilityoz.com/resources/mobile-testing/

gian@accessibilityoz.com
accessibilityoz.com

Thank you!
Access these slides at:
www.accessibilityoz.com
/about/conferences/

gian@accessibilityoz.com
accessibilityoz.com

Get in contact
enquiries@accessibility
oz.com

	Accessible JavaScript: Easier than you think!
	Agenda – Types of JavaScript functionality
	Agenda – Ten accessibility principles
	Agenda – Ten accessibility principles
	JavaScript Factsheet
	Types of JavaScript functionality
	Type 1
	Type 2
	Type 3
	Accessibility principles
	Principle 1
	Principle 1: Text alternatives
	Principle 1: Text alternatives
	Accessibility Basics webinar
	Accessibility Basics article
	CAPTCHA
	Example: CAPTCHA
	Want to learn more?
	Example: CAPTCHA
	Visually-dynamic content
	Examples: Visually-dynamic content
	Image buttons
	Examples: Image buttons
	Complex content
	Examples: Long descriptions for non-text content
	Text alternative requirements
	Interactive Maps Factsheet
	Principle 2
	What are input devices?
	Assistive tech that mimic input devices
	Principle 2: Input device accessiblity
	Principle 2: Input device accessiblity
	Keyboard
	Using the keyboard
	Example: Keyboard trap
	Keyboard factsheet
	Keyboard focus video
	Examples: Keyboard focus indicator
	Examples: Dynamic menus
	Keyboard requirements
	Touchscreen
	Mobile Accessibility Guidelines
	Principle 3
	Principle 3: Information and structure
	Principle 3: Information and structure
	Principle 3: Information and structure
	Labels and fieldsets
	Examples: Field Labels
	FIELDSET requirements
	FIELDSET requirements
	Forms factsheet
	Forms videos
	Accordions
	Examples: Bypass blocks
	Accordion Pattern
	Principle 4
	Principle 4: Sequence and focus order
	Principle 4: Sequence and focus order
	Why sequence is important
	Three orders
	Source Order factsheet
	Source order vs Display Order vs Keyboard Focus Order video
	Visual reading order
	Visual reading order – Important information
	Logical focus order
	Logical focus order
	Correct: Focus order
	Principle 5
	Principle 5: Illegible instructions
	Fields
	Incorrect: Mandatory fields
	Principle 6
	Principle 6: Timed activity
	Principle 6: Timed activity
	Flickering
	Pokemon Shock
	Pokemon Shock
	4. No flashing
	Flickering
	Incorrect: Flickering
	Time limits
	Timed activity
	Incorrect: Timing
	Movement
	Timed activity
	Incorrect: Pause, stop, hide
	Correct: Pause, stop, hide
	Alternatives to moving content
	Timed activity
	Timed redirects
	2.2.2: Pause, stop, hide
	Principle 7
	Principle 7: Finding & interacting with content
	Principle 7: Finding & interacting with content
	Instructions
	Example: Instructions
	Non-text content (JavaScript)
	Principle 8
	Principle 8: Change in content and context
	New windows
	Initiated on user request
	Change on user request
	Initiated on user request
	Initiated on user request
	Incorrect: On focus
	Incorrect: On focus
	Correct: On input with instructions
	Incorrect: On input
	Principle 9
	Principle 9: Consistent components
	Incorrect: Inconsistent pagination
	Incorrect: Inconsistent�Contextual help
	Principle 10
	Principle 10: Error descriptions & suggestions
	Principle 10: Error descriptions & suggestions
	Principle 10: Error descriptions & suggestions
	Field errors
	Describe input errors
	Describe input errors
	3.3.1: Error identification
	Incorrect: Field errors
	Correct: Field errors
	Forms factsheet
	Forms videos
	JavaScript Factsheet
	In conclusion
	Agenda – Types of JavaScript functionality
	Agenda – Ten accessibility principles
	Agenda – Ten accessibility principles
	Resources
	W3C ARIA APG - Patterns
	W3C ARIA APG - Practices
	AccessibilityOz Factsheets
	AccessibilityOz Developer Videos
	AccessibilityOz Developer Videos
	AccessibilityOz Developer Videos
	Mobile Accessibility Testing Guidelines
	Thank you!
	Get in contact

