
Securing Cloud
Native Workloads
With Istio

Gufran Mirza
gufranmirza

Talk Outline

● Introduction to Istio

● Service Identities

● Istio Authentication Policies

● Istio Authorization Policies

● Q & A

Istio - Ιστίο
Open source service mesh

What is a service mesh

●

● Infrastructure/framework that handles
communication between services

Often implemented as network proxies deployed
alongside the micro-services

Istio features

● Secure service-to-service communication

● Access controls

○ Authorization /Authentication

● Traffic control (routing rules, retries, timeouts, fault
injection, mirroring)

● Metcs and traces for traffic

Important Terminology

● Workload - anything owning/controlling pods (like
a Deployment) or the pods themselves

● Service - a microservice / application

Before Istio

POD A

Container1

 Routing code

Circuit breaker
code

Business logic
code

POD B
Container2

Routing code2

Circuit breaker
code2

Business logic
code2

Pod with Sidecar

POD

Container

Business logic
code

POD

Container

Business logic
code

Sidecar
container

No sidecar With sidecar

Routing code
Circuit breaker

code

Sidecar Proxy

● A proxy is deployed in a container next to each
instance of micro-service (inside a pod)

● Container name: istio-proxy

● It is transparent to application code

● Envoy open source proxy is currently used

How is the sidecar injected?

●

●

Manually

Automatically injected to pod on creation
● kubectl label namespace default istio-injection=enabled

With Istio - sidecar intercepts all traffic

Envoy
sidecar

container

POD A

Sidecar
container

Container

Business
logic code

HTTP,
TCP,
TLS...

HTTP,
TCP,
TLS...

Envoy
sidecar

container

POD C

Sidecar
container

Container

Business
logic code

Sidecar
container

Business
logic code

Container

Envoy
sidecar

container

POD B

Sidecar
container

Container

Business
logic code

Configuration is transparent to the services and not part of the code

Istio architecture

Service Mesh Security
Authorization & Authentication

Service Identities – The starting point
In a service mesh world, establishing the identity of
the workload providing a service is critical. Examples:

○ Kubernetes: Kubernetes service account

○ GCP: GCP service account

○ AWS: AWS IAM user/role account

○ On-premises (non-Kubernetes): user account, custom service

account

Conversion of identity into a certificate
● A private key within the workload pod is generated and

Made available to the proxy.

A certificate signing request is sent to the control plane.

The control plane provides the proxy a certificate scoped
to the identity of the POD (e.g. K8s service-account).

Control plane will manage rotation.

●

●

●

Identity Provisioning Workflow

Authentication

Istio provides two types of authentication

● End user authentication (JSON Web Token (JWT))

● Service to service authentication (mutual TLS)
○ PERMISSIVE: Workloads accept both mutual TLS and plain text traffic

○ STRICT: Workloads only accept mutual TLS traffic.

○ DISABLE: Mutual TLS is disabled

Authentication Flow

Worklod
A

Workload
C

Workload
B

Origin Auth (JWT)
Proxy

Proxy

ProxyClient

You can specify authentication requirements for workloads receiving
requests in an Istio mesh using peer and request authentication policies

Peer authentication
The following peer authentication policy requires all workloads
in namespace foo to use mutual TLS:

Authentication Demo
A picture is worth a thousand yamls

An ingress Gateway describes a load balancer
operating at the edge of the mesh

● Receives incoming HTTP/TCP connections

● Ingress Gateway is a customizable proxy that
can route inbound traffic to backend hosts

● Ingress Gateway handles all TLS operations
(handshake, certs/keys exchange)

Ingress Gateway

TLS modes enforced by the proxy

● PASSTHROUGH

● SIMPLE

● MUTUAL

● etc.

Ingress Gateway

Configuration YAML

Authentication Demo
A picture is worth a thousand yamls

Authorization
Istio’s authorization features provide mesh-, namespace-, and
workload-wide access control for your workloads in the mesh

○ Can service <A> send <this request> to service ?

○ Authorization policies support ALLOW, DENY and CUSTOM actions

○ Istio authorization (ALLOW and DENY) is enforced natively on Envoy

○ It is a good security practice to start with the allow-nothing policy
and incrementally add more ALLOW policies to open more access to
the workload.

Authorization Flow

Each Envoy proxy runs an authorization engine that authorizes requests at runtime. Authorization

engine evaluates the request context and returns the authorization result, either ALLOW or DENY

Authorization Policy

authorization policy that allows the
cluster.local/ns/default/sa/sleep
service account to access the
workloads with the app: httpbin

Authorization Demo
A picture is worth a thousand yamls

Q & A

Istio.io
 IstioMesh
github.com/istio

Connect with the community

Thank You

