
© 2024, Amazon Web Services, Inc. or its affiliates.

Modernize without
Madness
Hareesh Iyer, Sr. Solutions Architect, AWS

Agenda

• What are Microservices?

• Are Microservices better than a Monoliths?

• How do we move from a Monolith to Microservices?

© 2024, Amazon Web Services, Inc. or its affiliates. 3

What are Microservices?

Microservices are small, autonomous services that work together

- Sam Newman, Author – Principles of Microservices

Small enough that a single feature team can build, test, and
deploy it

Autonomous: self-contained, independently deployable
services, that don’t share data

Work Together through network calls; loosely
coupled

Microservices are small, autonomous services that work together

- Sam Newman, Author – Principles of Microservices

https://aws.amazon.com/compare/the-difference-between-monolithic-and-microservices-architecture/

© 2024, Amazon Web Services, Inc. or its affiliates. 10

Are Microservices better than a Monoliths?

It depends on your goals and challenges

Microservices vs Monolith:

Microservices can enhance business agility

Microservices can improve application scalability

Microservices can improve fault tolerance

But… understand the complexities that comes with
microservices

Need to align teams along with the application
refactoring

Overhead of handling data consistency

Hard to debug issues. Needs comprehensive
observability approach

What you don’t want – “A Distributed Monolith”

https://www.techtarget.com/searchapparchitecture/tip/The-distributed-monolith-What-it-is-and-how-to-escape-it

Prime Video – Distributed Stack

https://www.allthingsdistributed.com/2023/05/monoliths-are-not-dinosaurs.html

Building evolvable software systems is a strategy, not a
religion. And revisiting your architectures with an open mind is
a must.

 - Werner Vogels, CTO - Amazon

© 2024, Amazon Web Services, Inc. or its affiliates. 25

How do we move from a Monolith to
Microservices Architecture?

3-Step Approach

Decompose Strangler
Fig Automate

Step 1: Decompose

Domain-driven Design (DDD)

28

30

Domain-driven design focuses on understanding
a domain, and its subdomains.

31

DDD helps you to find a shared language
spanning business and engineering.

Event-driven modeling

1. Identify events, systems,
actors, etc.

2. Cluster-related concepts

3. Define bounded contexts and
sub-domains

What is EventStorming?

36

A workshop-based approach to breaking down a
non-trivial domain with the goal of coming to a

shared understanding.

EventStorming room layout

event
Something that a domain
expert cares about.
Immutable facts that
have occurred in the past.

Events

Order
received
by barista

Barista
received

orderReceipt
printed

Receipt
printed

Coffee
fulfillment

started

Coffee
ready

Complete
order on

tablet

Coffee
order

Complete
d

Order
Number
shouted

Out

Barista puts
completed
order with

receipt

Barista
stared
coffee
order

Coffee
moved to

in-
progress

Coffee
ready for
pickup

Order
processing

Coffee
order

started

Time

Identify Questions, Hotspots, People

40

Order
received
by barista

Barista
received

order

Receipt
printed

Receipt
printed

Order
processing

Coffee
fulfillment

started

Coffee
ready

Complete
order on

tablet
Coffee
order

Complete
d

Order
Number
shouted

Out

Baristaa puts
complted
order with

receipt

Barista
stared
coffee
orderCoffee
moved to

in-
progress

Coffee
order

started

Coffee
ready for
pickup

When do
we print a
receipt??

?

Does this
slow the
barista?

Barista

Custo
mer

This part
is

SLOOOW
!

Swim lanes

42

Needs refinement. Still not clear.Feeling good about this!

Identifying Boundaries

Team 1
(subdomain 1) Team 2

Team 3 Team 4

Identifying boundaries

Team 5

Step 2: Strangler Fig Approach

If you do a big-bang rewrite, the only
thing you are guaranteed of
is a big bang.

Martin Fowler
Thoughtworks

Strangler Fig pattern - Releasable incremental refactoring

https://martinfowler.com/bliki/StranglerFigApplication.html

The monolith

Monolith

Browser
monolithic database

Storefront
user interface

Region VPC

Public subnet Private subnet

Static assets

Order
Cart

Inventory

Browser

Current architecture

Monolith

Order
feature

Inventory
feature

Cart
feature

Common monolithic
database

Storefront
user interface

Browser

Decompose

Monolith

Order
feature

Inventory
feature

Cart
feature

Common monolithic
database

Storefront
user interface

Browser

Proxy

Proxy

Inventory
microservice

ACL
Monolith

Order
feature

Cart
feature

Browser
Common monolithic

database

Storefront
user interface

Proxy

Inventory
feature

Strangler Fig

Browser

Region

Amazon S3
Static assets

Amazon API
Gateway

AWS Lambda
Inventory

Amazon RDS
Inventory DB

VPC

Public subnet Private subnet

Order
Cart

Strangler Fig architecture

Inventory
microservice

ACL
Monolith

Order
feature

Cart
feature

Browser
Common monolithic

database

Storefront
user interface

New feature
microservice

Inventory
feature

Data Consistency

Proxy

Inventory
microservice

ACL
Monolith

Order
feature

Cart
feature

Browser
Common monolithic

database

Storefront
user interface

New feature
microservice

Inventory
feature

Data Consistency

Queue Synchronising
agent

Proxy

Inventory
microservice

ACL
Monolith

Cart
feature

Browser
Common monolithic

database

Storefront
user interface

Proxy

Inventory
feature

Order
feature

Order
microservice

Browser

Region

Amazon S3
Static assets

Amazon API
Gateway

AWS Lambda
Inventory

Amazon RDS
Inventory DB

VPC

Public subnet Private subnet

Cart

AWS Lambda
Order

Amazon DynamoDB
Order DB

Inventory
microservice

Monolith

Browser
Common monolithic

database

Storefront
user interface

Proxy

Inventory
feature

Order
feature

Order
microservice

Inventory
feature

Cart
microservice

Order
microservice

Cart
microservice

Inventory
microservice

Browser

Storefront
user interface

New feature
microservice

Final state

Browser

Region

Amazon S3
Static assets

Amazon API Gateway

AWS Lambda
Inventory

Amazon RDS
Inventory DB

AWS Lambda
Order

Amazon DynamoDB
Order DB

AWS Lambda
Cart

Amazon ElastiCache
Cart DB

Final State

Step 3: Automate

AWS Migration Hub
Refactor Spaces

Reduce the time to set up
and manage a refactor

environment

Shield application
consumers from

infrastructure changes

Reroute traffic from old to
new across multiple AWS

accounts

Start refactoring applications in days instead of months

AWS Migration Hub Refactor Spaces

Private subnet

Monolith
instances

Amazon API
Gateway

Network
Load Balancer

API Gateway VPC
link

Private subnet

AWS FargateApplication
Load Balancer

AWS Transit
Gateway
(optional)

Account (Refactor Spaces environment owner)

Account (new microservice)

Account (monolith)

VPC

VPC

Private subnet

VPC

Create Refactor
Spaces

environment
Share

environment
Create

application
Create services

with URL or
AWS Lambda

Add routes

Strangler fig with Refactor Spaces

© 2024, Amazon Web Services, Inc. or its affiliates. 65

Thank You!

