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• What are Microservices?

• Are Microservices better than a Monoliths?

• How do we move from a Monolith to Microservices?
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What are Microservices?



Microservices are small, autonomous services that work together

- Sam Newman, Author – Principles of Microservices



Small enough that a single feature team can build, test, and 
deploy it



Autonomous: self-contained, independently deployable 
services, that don’t share data



Work Together through network calls; loosely 
coupled



Microservices are small, autonomous services that work together

- Sam Newman, Author – Principles of Microservices



https://aws.amazon.com/compare/the-difference-between-monolithic-and-microservices-architecture/
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Are Microservices better than a Monoliths?





It depends on your goals and challenges

Microservices vs Monolith:



Microservices can enhance business agility



Microservices can improve application scalability



Microservices can improve fault tolerance



But… understand the complexities that comes with 
microservices



Need to align teams along with the application 
refactoring



Overhead of handling data consistency 



Hard to debug issues. Needs comprehensive 
observability approach 



What you don’t want – “A Distributed Monolith”

https://www.techtarget.com/searchapparchitecture/tip/The-distributed-monolith-What-it-is-and-how-to-escape-it





Prime Video – Distributed Stack



https://www.allthingsdistributed.com/2023/05/monoliths-are-not-dinosaurs.html



Building evolvable software systems is a strategy, not a 
religion. And revisiting your architectures with an open mind is 
a must.

      - Werner Vogels, CTO - Amazon
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How do we move from a Monolith to 
Microservices Architecture?



3-Step Approach

Decompose Strangler 
Fig Automate



Step 1: Decompose



Domain-driven Design (DDD)

28



30

Domain-driven design focuses on understanding 
a domain, and its subdomains.



31

DDD helps you to find a shared language 
spanning business and engineering.



Event-driven modeling

1. Identify events, systems, 
actors, etc.

2. Cluster-related concepts

3. Define bounded contexts and 
sub-domains



What is EventStorming?

36

A workshop-based approach to breaking down a 
non-trivial domain with the goal of coming to a 

shared understanding.



EventStorming room layout



event
Something that a domain 
expert cares about. 
Immutable facts that 
have occurred in the past.
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Identify  Questions, Hotspots, People
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Swim lanes

42



Needs refinement. Still not clear.Feeling good about this!



Identifying Boundaries
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Step 2: Strangler Fig Approach



If you do a big-bang rewrite, the only 
thing you are guaranteed of 
is a big bang.

Martin Fowler
Thoughtworks 



Strangler Fig pattern - Releasable incremental refactoring

https://martinfowler.com/bliki/StranglerFigApplication.html
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Step 3: Automate



AWS Migration Hub 
Refactor Spaces

Reduce the time to set up 
and manage a refactor 

environment

Shield application 
consumers from 

infrastructure changes 

Reroute traffic from old to 
new across multiple AWS 

accounts

Start refactoring applications in days instead of months

AWS Migration Hub Refactor Spaces
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Thank You!


