
Securely Unifying Deployments
in an Organization for Increased
Governance
Hariharan Ragothaman
conf42 DevOps 2025
Track: Security

About Me

• Software Engineer at AMD
• Previously Lead Software Engineer at athenahealth

• Also worked at Bain Capital and Bose Corporation

• Areas of Interest: DevSecOps, Distributed Systems, Applied Artificial
Intelligence, Embedded Systems

• LinkedIn: https://www.linkedin.com/in/hariharanragothaman/
• GitHub: https://github.com/hariharanragothaman

https://www.linkedin.com/in/hariharanragothaman/
https://github.com/hariharanragothaman

AGENDA

Introduction

Organizational Journey

Why security is supremely important?

Unified Deployment Model

Governance in Unified Deployments

Future Directions

Impact and Lessons Learned - Key Takeaways

Organizational Journey

• Deployment Landscape before Unification
• Challenges Identified
• Goals for Changes – DevSecOps Journey

Organizational Journey - DevSecOps Drive

Shift Left Security CI / CD Pipeline Integrations
Developers + Security +

Automation Teams
Collaboration

Security across the Software Supply Chain

1. Rapid Increase in usage of OSS
2. Number of packages released per year also increasing.

Why is security supremely
important?

Most Applications run on OSS and 3rd party components at every stage of SDLC

High Level Outlook of the SDLC Life Cycle

P
R

O
D

U
C

T
IO

N

THE SSCBEGINS

WHEN ANYTHING ENTERS

AND ENDSIN

PRODUCTION

CREATE PACKAGE PROMOTE DISTRIBUTE DEPLOY RUNCURATE

Current Approach: Detect & Remediate

Many Critical CVEs
in common components are

NON-EXPLOITABLE
IN 99% of CASES

120,000 BINARIES
0 EXPLOITABLECASES

ML MODELS?

YET ANOTHER
MALICIOUS
PACKAGE!

ML models can cause
MALICIOUS CODE EXECUTION

when loaded by Developer / Data Scientist

Public repositories
for models ARENOW ATARGET

These malicious models
WILL SEEMCOMPLETELYSAFE

on the Hugging Face website

A SUPPOSEDLY
LEGITIMATE MODEL -
JUST DATA, RIGHT?

YETWHEN THEMODEL LOADS,

MALICIOUS CODE EXECUTES

model =
load_model('vgg16_light/tf_model.h5')

import tensorflow as tf

from keras.preprocessing import

image from keras.models import

load_model import numpy as np

Load the model

model = load_model('vgg16_light/tf_model.h5')

img =

image.load_img("./cat.jpeg",target_size=(224,224))

img = np.asarray(img)

img = np.expand_dims(img,

axis=0) output =

model.predict(img)

if output[0][0] >

output[0][1]: print("cat")

else:

print('dog')

HOW? MALICIOUS CODE IS
HIDDEN IN THE BINARY DATA

ATTACKERSARE
EXPLOITING

GENERATIVEAI
FOR INJECTING

MALICIOUS PACKAGES

Open AI

ChatGPT

Package + Repository

Attacker

3. Publish malicious package

1. Question

2. Answer with nonexistent package

5. Answer w/ malicious

package name4. Question

Developer

6. npm install

7. Malicious code executes

AIPACKAGEHALLUCINATION

NOW EVENGENERATIVEAI INTRODUCES

SECURITY VULNERABILITIES!

Write an endpoint that returns a file from user input

@app.route("/file/<filename>")

def file(filename):

return open(filename, "r").read()

Requesting generation of an endpoint that returns file contents

The generated code is vulnerable to path traversal -
?filename=../../../../etc/passwd

Requesting generation of a secure endpoint also doesn’t help

Write a secure endpoint that returns a file from user

input and prevents directory traversal

@app.route("/secure_file/<filename>")

def secure_file(filename):

normalized_path = os.path.normpath(filename)

return open(normalized_path, "r").read()

Still vulnerable…
What about ?filename=/etc/passwd

Software Supply Chain Security Types

● Known Vulnerabilities

○ publicly disclosed security bugs

● Unknown Vulnerabilities - Zero Day Attacks

○ attack on a vulnerability that was not identified and fixed in time to prevent the attack

● Non-Code Issues

○ human error can lead to malicious software injection attacks

How did this happen? - Software Dependencies

Code I

wrote

Other

stuff

pulled in

during the

build

Code / Artifact / Package / Security /

Everything else…

What can we do better?

Educate ourselves

1

Don’t rely solely on
public repos

2

Manage
dependencies!

3

Manage
permissions!

4

Keep up with
maintenance

5

Regularly scan your
libraries & packages

6

Optimize
Continuous
Integration and
Deployment
Pipelines

7

Common Coding Insecurities

● Cross Site Scripting (XSS)

● SQL Injection

● LDAP Injection

● Cross Site Request Forgery (CSRF)

● … others! (check out OWASP organization --

https://owasp.org)

How
Developers

Works?
(Updated)

Declare

Declare
Dependencies

Write

Write Code

Declare

Maybe declare
more
dependencies

Build

Build Code

Run

Run Code

Contribute

Contribute as
Free or Open
Source

Software Supply Chain Threat Types

Intentional

Vulnerability

Backdoor

Malicious

Components

Malicious payloadcode

Unintentional

Vulnerability

Security bug

CVEs
Not a CVE

Shifting Left to the Developer

Unified Deployment Model

Governance in Unified
Deployment Pipelines

• What is governance? – Why does it matter?

• Auditability

• Compliance with Standards

• Clear Ownership and Accountability

Future Directions - DevSecOps Pipeline Integration

1. Plan & Code – Threat modeling, secure coding guidelines.

2. Build & Test – Static/dynamic analysis, container security, automated tests.

3. Release & Deploy – Vulnerability scanning, environment scanning.

4. Operate & Monitor – Continuous security monitoring, anomaly detection.

5. Feedback & Improve – Retrospectives, updated policies and tooling.

Impact and Lessons Learned - Key Takeaways

1. Security is Everyone’s Responsibility – Shift-left approach and collaboration are paramount.

2. Automation & Integration – Make security an intrinsic part of the CI/CD pipeline.

3. Design for Failure – Adopt AWS multi-AZ/region strategies, well-architected reviews, and
chaos engineering.

4. Continuous Improvement – Learn, adapt, and iterate on security posture and reliability.

References

1. OWASP: https://owasp.org/

2. JFrog SwampUp Conferences

3. Kubernetes Blogs: https://kubernetes.io/blog/

https://owasp.org/

	Slide 1: Securely Unifying Deployments in an Organization for Increased Governance
	Slide 2: About Me
	Slide 3: AGENDA
	Slide 4: Organizational Journey
	Slide 5: Organizational Journey - DevSecOps Drive
	Slide 6: Why is security supremely important?
	Slide 7
	Slide 8: WHEN ANYTHING ENTERS
	Slide 9
	Slide 10: Many Critical CVEs in common components are
	Slide 11: ML MODELS?
	Slide 12: A SUPPOSEDLY LEGITIMATE MODEL - JUST DATA, RIGHT?
	Slide 13: YET WHEN THE MODEL LOADS, MALICIOUS CODE EXECUTES
	Slide 14: HOW? MALICIOUS CODE IS HIDDEN IN THE BINARY DATA
	Slide 15: AI PACKAGE HALLUCINATION
	Slide 16: NOW EVEN GENERATIVE AI INTRODUCES SECURITY VULNERABILITIES!
	Slide 17: Software Supply Chain Security Types
	Slide 18: How did this happen? - Software Dependencies
	Slide 19: What can we do better?
	Slide 20: Common Coding Insecurities
	Slide 21: How Developers Works? (Updated)
	Slide 22: Software Supply Chain Threat Types
	Slide 23: Shifting Left to the Developer
	Slide 24
	Slide 25: Unified Deployment Model
	Slide 26: Governance in Unified Deployment Pipelines
	Slide 27: Future Directions - DevSecOps Pipeline Integration
	Slide 28: Impact and Lessons Learned - Key Takeaways
	Slide 29: References

