
C++ and Python: Building Robust
Applications by Offloading
Compute-Heavy Workloads

Hariharan Ragothaman
conf42 Python2025
Track: Data

About Me

• Software Engineer at AMD
• Previously Lead Software Engineer at athenahealth

• Also worked at Bain Capital and Bose Corporation

• Areas of Interest: DevSecOps, Distributed Systems, Applied Artificial
Intelligence, Embedded Systems

• LinkedIn: https://www.linkedin.com/in/hariharanragothaman/
• GitHub: https://github.com/hariharanragothaman

https://www.linkedin.com/in/hariharanragothaman/
https://github.com/hariharanragothaman

AGENDA

Introduction

Similarities and Difference b/w Python and C++

Overview of Boost.Python and pybind11

Project Setup

Minimal Examples

Demo

Advanced Topics

Distribution and Packaging

Top Takeaways

Similarities b/w C++ and Python | Problem Statement

Why Python?
1. Faster Development
2. Relatively Simpler Interfaces and Usage
3. Best Option for Prototyping

Similarities b/w C++ and Python

Similarities b/w C++ and Python

Performance (or) other Needs?

1. Benchmarking
2. Cross-functional teams in an organization.
3. numpy? And other external libraries?

1. Abstraction over contiguous multi-dimensional array
2. Easy to use API for many mathematical function
3. Core Implementation is in C and C++

Note: Python 3.13 is about 15% faster for module imports in large projects,
and up to 10% faster for function calls in CPU-intensive tasks
Also now has new JIT and no-GIL modes.

Project Setup and Minimal Examples

Some Pre-Requisites:

1. A working C++ compiler that supports at least C++11.
2. Python development headers and libraries, which you can install

1. Example: apt-get install python3-dev.
3. A build system, often CMake, to coordinate compilation, linking, and library paths.

Note:

For Boost.Python specifically, you also need Boost installed.
For pybind11, you can install it via a package manager or just copy the headers into your project.

Overview of Boost.python and pybind11

If you've used Python for prototyping or data analysis, but you have a performance bottleneck that begs for C++,
you need a bridge between them. Both Boost.Python and pybind11 do this.

Boost.Python: Part of the larger Boost ecosystem, actively maintained for many years. It's stable, well-
documented, and ships with a Python module linking library.

pybind11: A more modern alternative, heavily inspired by Boost.Python, but it's a lightweight, header-only
library. If you dislike additional library dependencies and want an easy install, pybind11 might be your choice.

In practice, they both achieve the same result: they let you write C++ code that can be called from Python as if it
were a Python module. Let's explore how to set up our environment.”

References
Boost.Python – https://www.boost.org/doc/libs/1_78_0/libs/python/doc/html/index.html
Pybind11 - https://github.com/pybind/pybind11

Advanced Topics

1. Exposing C++ Classes
2. Exception Translation

▪ Both libraries let us map C+ exceptions to Python exceptions to Python exceptions so your users see
Pythonic stack traces.

3. Containers and Iterators
▪ You can easily pass std::vector, std::array, or other containers back and forth, especially in pybind11 with

its STL container support.
4. Integration with numpy

▪ Boost.Python has a numpy submodule for arrays.pybind11 has pybind11/numpy.h to handle NumPy
arrays with minimal overhead.

5. Performance Considerations
▪ Minimizing boundary crossings can help keep your Python/C++ integration fast. For large data sets,

consider moving more logic into C++.

Distribution and Packaging

Once bindings are ready, you can:
1. Use them locally: Just copy the compiled .so or .pyd next to your Python scripts, or set your PYTHONPATH

appropriately.
2. Make a pip-installable package: Create a setup.py using either vanilla setuptools or scikit-build. Then, you can

publish to PyPI or share it with other so “pip install my_module” just works.

What about binding Performance?

There are definitely overheads
1. Data needs to go back and forth between C++ objects and PyObjects
2. There is implementation difference b/w Boost.Python and pybind11

1. For example - pybind11 relies on smartpointers / vectors – which can make things slower.

Hence we need to choose the right parts of our code / product that need to be optimized.

Platform Time (seconds)

C++ 0.0042

Python 1.2206

Boost.Python 1.5278

pybind11 5.74263

Counter-Measures:
1. pybind11 and Boost.Python have special types that

directly bind with python and C++.
1. Example; py::dict in C++ code (Use binding objects

for C++ conversion)
2. Optimized type findings such– py::array_t<double>
3. Use smart pointers instead of regular pointers. (python

is a garbage collected language)

Dynamic Binding using Cppyy

1. Writes C++ directly into Python
2. Supports CPython and PyPy
3. Easy to Use – Much much faster than Pybind11 and Boost.python

Reference: https://github.com/root-project/cling - C++ Cling Interpreter

Advantages:

1. No need to install / compile
2. Full support for templates
3. Full support for inheritance
4. Full support for callbacks and lambdas

https://github.com/root-project/cling

Top Takeaways

1. Boost.Python and pybind11 are both excellent tools to blend the power of C++ with the expressiveness of Python.
2. Choose Boost.Python if you're already in the Boost ecosystem or need its robust set of features.
3. Choose pybind11 if you want a lightweight, modern, header-only approach.
4. The basic pattern is always similar:

1. Write a C++ function or class.
2. Use a module-defining macro to expose it.
3. Compile as a shared library.
4. Import it in Python.

5. For broader usage, integrate with packaging tools like setuptools or scikit-build.
6. To dynamically bind – use Cppyy (that uses cling interpreter)

Note: Code in slide-deck is checked-in here: https://github.com/hariharanragothaman/conf42Python2025

	Slide 1: C++ and Python: Building Robust Applications by Offloading Compute-Heavy Workloads
	Slide 2: About Me
	Slide 3: AGENDA
	Slide 4: Similarities b/w C++ and Python | Problem Statement
	Slide 5: Similarities b/w C++ and Python
	Slide 6: Similarities b/w C++ and Python
	Slide 7: Performance (or) other Needs?
	Slide 8: Project Setup and Minimal Examples
	Slide 9: Overview of Boost.python and pybind11
	Slide 10: Advanced Topics
	Slide 11: Distribution and Packaging
	Slide 12: What about binding Performance?
	Slide 13: Dynamic Binding using Cppyy
	Slide 14: Top Takeaways

