DL for Protein Structure Prediction

Iaroslav Geraskin

Who I am Iaroslav Geraskin

- 4 years in ML research and infrastructure
- MS in Computational Biology
- Worked on antibody structure prediction ML for drug discovery

Agenda

- Proteins and why we need them
- Evolutionary information and MSA
- Structure prediction methods
- Physics
- Statistics
- Deep Learning

Proteins

- The task of structure prediction is one of the most important tasks in bioinformatics
- Data obtained through prediction are used in medicine and biotechnology (e.g. creating new enzymes and drugs)

Why do we need proteins?

MSA

 Multiple alignment allows you to extract evolutionary information from multiple sequences, determine which positions depend on which positions, which positions are conserved and which are not

Q5E940 BO RLAO HU RLA0 MO RLA0 RLA0 CH RLAO RA Q7ZUG3 BR RLA0 IC RLA0 DR RLA0 DI Q54LP0 DI RLA0 PL RLAO SU RLAO SU RLAO SU RLAO AE RLAO PY RLA0 ME RLAO ME RLA0 AR RLAO ME RLAO ME RLA0 ME RLAO ME RLA0 ME RLAO PY RLAO PY RLAO PYE RLAO PY RLAO HA RLAO HA RLAO HA RLAO TH RLA0 TH RLAO PI

		*	:		. *	: : :		
BOVIN	M <mark>P</mark> R	EDR <mark>A</mark> T <mark>WK</mark> SN Y	FLK <mark>IIQ</mark> LI	DDY <mark>PKCFIVGAD</mark>	N <mark>V G S</mark> K <mark>QMQ</mark> Q I RMS L F	IGK- <mark>AVV</mark> L <mark>M</mark> GKNI	MMRKAIRGHLENNI	PALE
HUMAN	M <mark>P</mark> R	EDR <mark>A</mark> T <mark>WK</mark> SN Y	FLK <mark>I</mark> I <mark>Q</mark> LI	DDY <mark>P</mark> KCFIV <mark>G</mark> AD	N <mark>V G S</mark> K <mark>QMQ</mark> Q I RMS L F	IGK- <mark>AVV</mark> L <mark>M</mark> GKNT	<mark>MMRKAIRGHLE</mark> NN <mark>I</mark>	PALE
MOUSE	M <mark>P</mark> R	EDR <mark>A</mark> T <mark>WK</mark> SNY	FLK <mark>I</mark> I <mark>Q</mark> LI	DDY <mark>P</mark> KCFIV <mark>G</mark> AD	N <mark>V G S</mark> K <mark>Q M Q</mark> Q I R M S L F	IGK-AVVLMGKNT	MMRKAIRGHLENNI	PALE
A0 RAT	MPR	EDR <mark>A</mark> T <mark>WK</mark> SN Y	FLK <mark>I</mark> I <mark>Q</mark> LI	DDY <mark>PKCFIVGAD</mark>	N <mark>V G S</mark> K <mark>QMQ</mark> Q I RMS L F	IGK-AVVL <mark>MGKN</mark> I	MMRKAIRGHLENNI	PALE
CHICK	MPR	EDR <mark>A</mark> T <mark>WK</mark> SN Y	FMK <mark>IIQ</mark> LI	DDY <mark>PKCFVVGAD</mark>	N <mark>V G S</mark> K <mark>QMQ</mark> Q I RMS L F	GK-AVVL <mark>MGKN</mark> I	MMRKAIRGHLENNI	PALE
RANSY	MPR	EDR <mark>A</mark> T <mark>WK</mark> SN Y	FLK <mark>IIQ</mark> LI	DDY <mark>PKCFIVGAD</mark>	N <mark>V G S</mark> K <mark>QMQ</mark> Q I RMS L F	GK-AVVL <mark>MGKN</mark> I	MMRKAIRGHLENN S	SALE
BRARE	M <mark>P</mark> R	EDR <mark>A</mark> T <mark>WK</mark> SN Y	FLK <mark>I</mark> I <mark>Q</mark> LI	DDY <mark>PKCFIVGAD</mark>	N <mark>V G S</mark> K <mark>Q M Q</mark> T <mark>I R</mark> L S <mark>L</mark> F	GK-AVVL <mark>MGKN</mark> I	MMRKAIRGHLENNI	PALE
ICTPU	MPR	EDR <mark>A</mark> T <mark>WK</mark> SN Y	FLK <mark>IIQ</mark> LI	NDYPKCFIVGAD	N <mark>V G S</mark> K <mark>Q M Q</mark> T <mark>I R</mark> L S <mark>L</mark> F	GK-AIVLMGKNI	MMRKAIRGHLENNI	PALE
DROME	MVR	ENK <mark>A</mark> A <mark>WK</mark> AQY	FIK <mark>V</mark> V <mark>E</mark> LI	DEF <mark>P</mark> KCFIVGAD	N <mark>V G S</mark> K <mark>Q M Q</mark> N <mark>I R</mark> T S <mark>L</mark> F	IGL-AVVLMGKNT	MMRKAIRGHLENNI	PQLE
DICDI	MS <mark>G</mark>	A <mark>G-SKRK</mark> KLF	TEK <mark>A</mark> TKLI	TTYDKMIVAEA <mark>D</mark>	F <mark>VGS</mark> S <mark>QLQ</mark> K <mark>IR</mark> KS <mark>I</mark> F	GI-G <mark>AV</mark> L <mark>M</mark> GKK	MIRKVIRDLADSKI	PE LD
DICDI	MS <mark>G</mark>	A <mark>G</mark> -SKR <mark>K</mark> NVF	IEK <mark>A</mark> TKLE	TTYDKMIVAEA <mark>D</mark>	F <mark>VGS</mark> S <mark>QLQ</mark> KIRKSIF	IGI-G <mark>AV</mark> L <mark>M</mark> GKK	MIRKVIRDLADSKI	₽E <mark>L</mark> D
PLAF8	МАК	LSKQQK <mark>K</mark> QMY	IEKLSSL	QQ <mark>Y</mark> SK <mark>ILIV</mark> HV <mark>D</mark>	N <mark>V G S</mark> N <mark>Q M</mark> A S <mark>V R</mark> K S L F	IGK- <mark>ATI</mark> L <mark>M</mark> GKNI	RIRTALKKNLQAVI	PQIE
SULAC	<mark>M</mark> I <mark>G</mark> LAVTTT	KK <mark>IA</mark> K <mark>WK</mark> VDE	VAE LTEKI	KTHKT IIIAN I <mark>E</mark>	GFPADKLHE IRKKLF	IGK – <mark>A</mark> DIKVTKNI	I <mark>LF</mark> N I <mark>ALK</mark> N <mark>AG</mark>	YD <mark>T</mark> K
SULTO	<mark>M</mark> RI <mark>M</mark> AVITQE	RK <mark>IA</mark> K <mark>WK</mark> IEE	<mark>a</mark> ke <mark>t</mark> e <mark>ð</mark> ki	REYNTIIIAN I <mark>E</mark>	<mark>GFP</mark> ADK <mark>L</mark> HD <mark>IR</mark> KKMF	IGM-AEIKVTKNT	LFGIAAKNAGJ	LDVS
SULSO	<mark>M</mark> KR <mark>L</mark> ALALKQ	RK <mark>VA</mark> S <mark>WK</mark> LEE	VKELTEL]	KNSNT <mark>ILIG</mark> NL <mark>E</mark>	<mark>GFP</mark> ADK <mark>L</mark> HE IRKKLF	GK- <mark>ATIKVTKN</mark> I	LFKIAAKNAG	IDIE
AERPE	MS <mark>VV</mark> SLV <mark>G</mark> QMYKRE	K <mark>PIP</mark> E <mark>WK</mark> TLM	LRE LE EL I	SKHRVVLFADLT	GTPTFVVQRVRKKLW	IKK – <mark>YPMMV</mark> AKKI	LILRAMKAAGLEI	LDDN
PYRAE	- <mark>MMLA I</mark> GKRRYVRT	RQ <mark>YP</mark> AR <mark>K</mark> VK 1	VSEAT <mark>EL</mark> I	.QKY <mark>P</mark> YVFLFDLH	GLS <mark>S</mark> RILHE YRYRLF	RY- <mark>GVIKI</mark> IKP	LFKIAFTKVYGG	IP AE
METAC	M <mark>A</mark> EERHHT	EH <mark>IP</mark> Q <mark>WK</mark> KDE	IEN <mark>IKEL</mark> I	IQS <mark>h</mark> kv <mark>fgmvgie</mark>	<mark>GI</mark> LATK <mark>MQ</mark> K IRRDLK	DV- <mark>AVLKV</mark> SRNI	LTE RALNQLGF	et <mark>ip</mark>
METMA	M <mark>A</mark> EERHHT	EH <mark>IP</mark> Q <mark>WK</mark> KDE	IEN IK <mark>E</mark> LI	QSHKVF <mark>GMV</mark> RIE	<mark>GI</mark> LATK <mark>IQ</mark> KIRRDLK	DV- <mark>AVLKVS</mark> RNI	LTE RALNQLGF	es <mark>tp</mark>
ARCFU	MAAVRGS-	– – <mark>PP</mark> E <mark>YK</mark> VR <i>A</i>	VEE IKRMI	SSK <mark>PVVAIV</mark> SFR	N <mark>V P</mark> A <mark>G Q M Q</mark> K I R R E F F	IGK – <mark>AE I KV</mark> VKNI	LLE RALDALG	GDYL
METKA	<mark>mav</mark> k <mark>a</mark> k <mark>g</mark> q <mark>pp</mark> sgye	<mark>PKVA</mark> EWKRRE	VKELK <mark>E</mark> LN	IDE YEN V <mark>GL V</mark> DL <mark>E</mark>	<mark>G IP A PQLQ</mark> E IR AK LF	ERD <mark>T II RMSRN</mark> T	LMRIALEEKLDERF	<mark>b</mark> e te
METTH	M	AH <mark>VA</mark> EWKKKE	VQELHDL]	K <mark>GY</mark> EV <mark>VGIA</mark> NLA	.D <mark>IP</mark> AR <mark>QLQ</mark> KMRQTLF	DS- <mark>ALIRMS</mark> KK	LISLALEKAGRELF	ЕИ <mark>V</mark> D
METTL	<mark>M</mark> ITAESE	HK <mark>IAPWK</mark> IEE	VNKLK <mark>EL</mark> I	KN <mark>G</mark> QI <mark>VALV</mark> DMM	E <mark>V P</mark> AR <mark>QLQ</mark> E IRDK IF	R-GTMTLKMSRN1	LIE RAIKE VAEET GNE	PEFA
METVA	<mark>M</mark> IDAKSE	HK <mark>IAPMK</mark> IEE	VNALK <mark>E</mark> LI	KSANVIALIDMM.	E <mark>V P</mark> A V <mark>QLQ</mark> E IRDK IF	L-DQ <mark>MTLKMSRN</mark> T	LIKRAVEE VAEETGNE	PEFA
METJA	METKVK	AH <mark>VAPWK</mark> IEE	VKTLK <mark>G</mark> L]	KSK <mark>PVVAIV</mark> DMM	D <mark>VPAPQLQ</mark> E IRDK IF	L-DK <mark>V</mark> KLRMSRN1	LIIRALKEAAEELNNE	<mark>9kt</mark> a
_PYRAB	M	AH <mark>VA</mark> EWKKKE	VEELANL]	KSYPVIALVDVS	SMPAYPLSQMRRL IF	ENGGLLRVSRN1	LIELAIKKAAQELGKE	PELE
_PYRHO	М	AH <mark>VA</mark> EWKKKE	VEELAKL	KSYPVIALVDVS	SMPAYPLSQMRRL IF	RENGGLLRVSRN1	LIELAIKKAAKELGKE	PELE
_PYRFU	М	AH <mark>VA</mark> EWKKKE	VEELANL	KSYPVVALVDVS	SMPAYPLSQMRRL IF	ENN <mark>GLLRVSRN</mark> T	LIELAIKKVAQELGKE	PELE
_PYRKO	M	AH <mark>VA</mark> EWKKKE	VEELANI	KSY <mark>P</mark> VIALVDVA	GVPAYPLSKMRDKLF	-GKALLRVSRN7	LIELAIKRAAQELGQF	PELE
_HALMA	<mark>MSA</mark> ESERKT	ET <mark>IPEWK</mark> QEE	VDAIVEMI	ESYESVGVVNIA	GIPS RQLQDMRRDLH	IGT – AE L RVSRNT	LLE RALDD VDI	DGLE
_HAL VO	MSESEVRQT	E V I PQWKRE E	VDELVDF	E SYE SVGV VGV A	GIPS RQLQSMRRE LH	IGS-AAVRMSRNT	LVNRALDEVNI	DGFE
HALSA	<mark>M</mark> S <mark>A</mark> EEQRTT	EE <mark>VP</mark> EWKRQE	VAELVDLI	ETYDSVGVVNVT.	GIPSKQLQDMRRGL	IGQ-AALRMSRNI	LLVRALEE AGI	D <mark>GL</mark> D
THEAC	M	KE <mark>V</mark> SQQKKE I	VNE TTOR	KASRS VAIV D <mark>T</mark> A	GIRT RQIQD IRGK NE	GK-INLKVIKK	LLFKALENLGDF	EKLS
THEVO	М	RKINPKKKE I	VSELAQD	TKSKAVAIVDIK	GVRTRQMQD IRAKNE	DK-AKIKAAKK	LLFKALDSINDF	EKLT
PICTO	М	TEPAQWKIDF	AKNTENE	NSRKVAAIVSIK	GLRNNEFOK IRNS IF	DK-ARIKVSRAH	LLRLAIENTGKN	NNTV
ruler	110	20		40	506	0	80	90

Structure prediction methods

- Physical methods such as Rosetta are computationally complex
- Methods that use machine learning and more evolutionary data perform better on average
- End-to-End methods are faster because do not use long iterative simulations (unlike physical methods)
- For some classes of proteins for which evolutionary information is not available, methods that rely on it perform less well.

Sequence Information ->

Three-body problem

 Three-body problem does not have a general solution that can be expressed in terms of a finite number of standard mathematical operations. Moreover, the motion of three bodies is generally nonrepeating, except in special cases.

Sun - Earth - Moon Orbits

Molecular dynamics Simulation, HPC, trajectories

Molecular dynamics Physical potential

- Compute new positions for particles based on forces acting on them
- Take a lot of small steps
- Can we get a good approximation first?
- Why follow physics when we have statistics?

Empirical Potential Energy Function

Homology modeling

... HDWLRDAHAMEKQAES...

Target sequence

Database search

Residue number

Model evaluation

Model optimization

...HDWLRDAHAMEKQAES...

Identification of template

Refinement of sequence alignment

E Sta

Adding loops and sidechains Building model framework

Molecular dynamics Statistical potential

- If we are moving into an unlikely position apply opposite forces
- Estimate likeliness of different positions based on known structures
- Lower potential of likely positions, make unlikely positions have higher potential
- Need to know likelihood of positions

Alphafold 1 Predict the potential, convolution, MSA features

Alphafold 2 Use structure templates + transformers + end-to-end structure

Single Seq

- Compress evolutionary information from a large database into a LLM
- Train a small network to predict geometric features
- Use physics based methods to refine

Alphafold 3 Diffusion, ligands and more

Conclusion

- Physics based methods require a lot of compute
- Statistics can help find good approximation
- DL can help find good approximation faster/better
- Getting more data sources into a model is challenging
- Pre-trained language models can help encode protein knowledge
- End-to-end methods allow to use DL for every step of structure prediction
- Physics based refiner can be used to obtain more "natural" result
- New DL methods such as transformers and diffusion models trickle down into biology

Questions? Reach out!

linkedin