
Sensitivity: General

DevOps 2024

Indika Wimalasuriya

Maximizing Speed,
Costs and UX with
AWS ElastiCache

Serverless

DevOps 2024

Sensitivity: General

• Importance of Performance

• Challenges in Traditional (Server-Based) ElastiCache

• Overview and Capabilities of ElastiCache Serverless

• Implementation Overview

• Anti-Patterns to Avoid and Best Practices

Agenda

DevOps 2024

Sensitivity: General

System performance is corelated with revenue!

DevOps 2024

• Walmart found that for every 1 second improvement in page load time,

conversions increased by 2%

• COOK increased conversions by 7% by reducing page load time by 0.85

seconds

• Mobify found that each 100ms improvement in their homepage's load

time resulted in a 1.11% increase in conversion

• Study by HubSpot found that even a few milliseconds can significantly

impact the user experience (UX), conversion rates, and, ultimately,

revenue

Sensitivity: General

Solution : Cache the frequently access data

DevOps 2024

Primary advantages :

• Low Latency: Enables real-time
responses.

• High Throughput: Supports a significant
volume of data processing.

• High Scalability: Easily scales to handle
increasing workloads.

Top use cases :

• Real-time Analytics
• Financial Trading Systems
• Caching and Session Storage
• Online Transaction Processing (OLTP)
• Gaming and Multimedia Applications
• Recommendation Engines
• Ad Tech and Digital Marketing
• IoT Data Processing
• Scientific and Research Applications

Caching is a mechanism, whether hardware or software, that stores frequently accessed data for faster retrieval
compared to the original source, typically databases, resulting in high performance and low-latency access.

Sensitivity: General

AWS in memory cache options

DevOps 2024

• ElasticCache for
MemCachedd - Is simple,
non-persistent caching

• ElasticCache for Redis - Adds
persistence, replication, and
more capabilities

• MemoryDB for Redis -
Optimizes for ultra low sub-
millisecond latency
applications

Feature
ElastiCache for
MemCachedd

ElastiCache for Redis MemoryDB for Redis

Cache Engine MemCachedd Redis Redis

Use Case Caching, session storage
Caching, session stores,
queues, leaderboards,
transient data

Caching, session stores,
real-time apps needing ultra
low latency

Multi-AZ Support No Yes Yes

Read Replicas No Yes Yes

Durability Non-persistent Persistent Persistent

Data Persistence No Yes Yes

Automatic Backups No Yes Yes

Sub-millisecond Latency No No Yes

Automatic Failover No Yes Yes

Data Partitioning/Sharding No Yes Yes

Multi-Threaded
Architecture

Yes Yes Yes

Security
In-Transit Encryption, IAM
Authentication

In-Transit Encryption, IAM
Authentication, Encryption
at Rest

In-Transit Encryption, IAM
Authentication, Encryption
at Rest

Global Data Distribution No Yes (Redis Global Datastore) Yes (Redis Global Datastore)

Monitoring and Logging
CloudWatch Metrics,
Enhanced Monitoring

CloudWatch Metrics,
Enhanced Monitoring

CloudWatch Metrics,
Enhanced Monitoring

Compatibility with Redis
Commands

Limited Extensive Extensive

Scalability
Horizontal scaling with
MemCachedd nodes

Horizontal and Vertical
scaling

Horizontal and Vertical
scaling

Ease of Use Simple Simple Simple

Managed Service Yes Yes Yes

Sensitivity: General

Challenges in Server-Based In-Memory
Implementations

DevOps 2024

Managing Capacity: Capacity management in traditional
server-based in-memory implementations relies on peak
points, causing performance impacts during spikes—an
inherent challenge.

Cost Overhead: Implementations may suffer from
either over-provisioning or under-provisioning, leading
to cost inefficiencies.

Scaling Complexity: Scaling traditional in-memory
databases requires intervention and careful capacity
planning, introducing complexity

Infrastructure Management Burden: Managing servers
for in-memory databases involves significant operational
tasks, including provisioning, patching, and monitoring.

Operational Overhead: Operational tasks in traditional in-
memory databases can be time-consuming, diverting focus
from development efforts.

Development Slowdown: Initial setup and ongoing
maintenance efforts in traditional approaches may
impede development speed.

Manual High Availability Setup: Ensuring high availability
in traditional in-memory databases necessitates manual
implementation of redundancy and failover mechanisms.

Sensitivity: General

Challenges in Capacity Management

DevOps 2024

Provisioned Capacity

Over Provisioned (Excess Cost)

Under Provisioned (Performance Impact)

Sensitivity: General

Amazon ElastiCache Serverless

DevOps 2024

• Create a cache in under a minute

• No capacity management

• 700 microseconds at p50, 1.3 milliseconds at p99

• Up to 5 TB of storage

• Pay-per-use

• 99.99% availability SLA

• Single endpoint experience

• PCI-DSS, SOC compliant, and HIPAA eligible

Pricing :

Data stored: Pay for ElastiCache Serverless based on data stored, measured
in gigabyte-hours (GB-hrs). Continuous monitoring calculates hourly
averages, and each cache is metered for a minimum of 1 GB.

ElastiCache Processing Units (ECPUs): Pay for requests in ECPUs, covering
vCPU time and data transfer. Each read or write consumes 1 ECPU per
kilobyte (KB) transferred. Additional vCPU time or data transfer over 1 KB
scales ECPUs proportionally.

Sensitivity: GeneralDevOps 2024

MemCached : Implementationon Overview

Go to Amazon ElasticCache-> MemCached -> Create MemCached cache

Sensitivity: GeneralDevOps 2024

MemCached : Implementationon Overview

1. Select Serverless
2. Give a Name
3. Just Create

Sensitivity: GeneralDevOps 2024

MemCached : Implementationon Overview

Cache will get created under a 1 min

Sensitivity: GeneralDevOps 2024

MemCached : Implementation Overview

Command Description

/usr/bin/openssl s_client -
connect <MemCached end point>
-crlf

Initiates a secure connection to the
MemCachedd server using OpenSSL and
specifies the endpoint and port (11212).

set product_id 0 0 9
Sets the variable product_id ' with an
expiration time of 0 (no expiration) and a
data size of 9 bytes.

AERD10001
Assigns the value "AERD10001
" to the variable 'product_id “

STORED
Indicates that the data was successfully
stored in the MemCachedd server.

get product_id Retrieves the value of the variable 'a'.

VALUE product 0 5
Indicates that the variable 'a' has a data size
of 5 bytes and starts the output of the
variable's value.

AERD10001
Displays the value assigned to the variable
'a', in this case, "hello".

END Marks the end of the response.

Sensitivity: General

Anti-Patterns to Avoid

DevOps 2024

Anti-Pattern Description How to Avoid

Over-Reliance on
Caching

Avoid relying excessively on
caching. Critical data should still
be retrievable from the primary
data source to ensure accuracy.

• Perform periodic assessments to identify critical data that should
always be retrieved from the primary source.

• Implement fallback mechanisms to fetch data from the primary
source when not available in the cache.

Not Handling Cache
Misses

Implement strategies to handle
cache misses effectively, ensuring
that your application gracefully
handles scenarios where data is
not in the cache.

• Develop error-handling mechanisms to gracefully manage cache
misses.

• Implement a mechanism to retrieve data from the primary source
when a cache miss occurs. - Consider using default values when
appropriate to maintain application functionality.

Neglecting Security
Measures

Don't overlook security
considerations. Implement
proper authentication and
authorization mechanisms to
protect sensitive data in the
cache.

• Implement robust authentication and authorization mechanisms
for access to the cache.

• Encrypt sensitive data stored in the cache. - Regularly review and
update security measures to address emerging threats.

Sensitivity: General

Best Practices to follow

DevOps 2024

Best Practices Importance Action Examples

Optimize Data Access
Patterns:

Maximizing the benefits of
serverless caching.

Design cache access patterns
tailored to your application's
specific needs.

Read-through, write-through,
write-behind, cache-aside,
refresh-ahead, cache-aside
with write-behind

Use Efficient Serialization: Reducing data transfer costs
and improving overall
performance.

Opt for efficient data
serialization formats.

MessagePack, Protocol
Buffers, Apache Avro, JSON,
FlatBuffers

Leverage Cache Keys Wisely: Facilitating easy retrieval and
minimizing cache collisions.

Choose meaningful and
efficient cache keys.

user_profile:{user_id},
product_info:{product_id},
session_data:{session_id}

Monitor and Analyze: Identifying performance
issues, usage patterns, and
bottlenecks.

Implement robust monitoring, Cache hit & miss rate,
latency/response time, cache
eviction rate, data transfer
volume, cache size

Sensitivity: General

Thank you!

DevOps 2024

