# **77%** Expects Generative AI to

have the largest impact on their business out of all emerging technologies 73% Believe Generative AI will

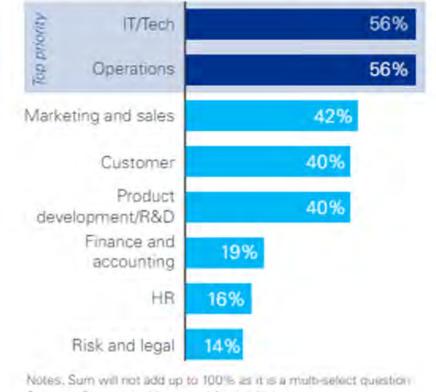
increase workforce productivity

71% Will implement their first Generative AI solution within next two years 64% Believe Generative AI will

help their business gain a competitive advantage over competitors

**KPMG Generative AI Survey 2023** 

# Exhibit 6: Top priority functions for adoption are IT/Tech and operations



Sources: Generative Al survey, March 2023

**KPMG Generative AI Survey 2023** 

# SRE 2.0 : Amplifying Reliability with GenAl

Indika Wimalasuriya SRE - 2024



# Agenda

- Challenges in Traditional SRE.
- The Role of GenAl in SRE
- GenAl Impacts in Key Pillars of SRE
- GenAl Use Cases and Potential Benefits
- Implementation Strategies
- Best Practices and Pitfalls to Avoid
- Future Outlook

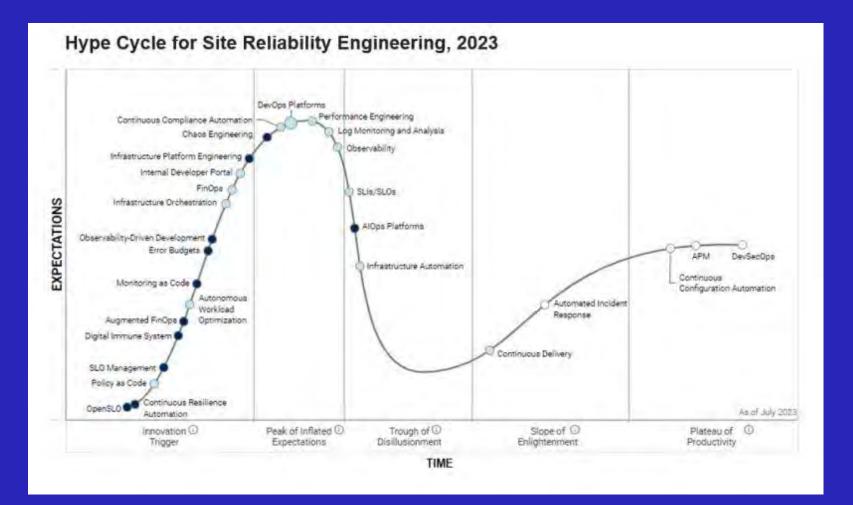
# Quick Intro about myself



SRE - 2024

- Resides in Colombo, Sri Lanka, with my beautiful daughter and wife.
- Reliability Engineering Advocate, Solution Architect (specializing in SRE, Observability, AlOps, & GenAl).
- Employed at Virtusa, overseeing technical delivery and capability development.
- Passionate Technical Trainer.
- Energetic Technical Blogger.
- AWS Community Builder Cloud Operations.
- Ambassador at DevOps Institute (PeopleCert).

# Gartner SRE Hype Cycle



 Focus on trajectory of emerging technologies and frameworks for SRE practices

 Aims to ensure reliability, maximize performance, and minimize resources

# Site Reliability Engineering

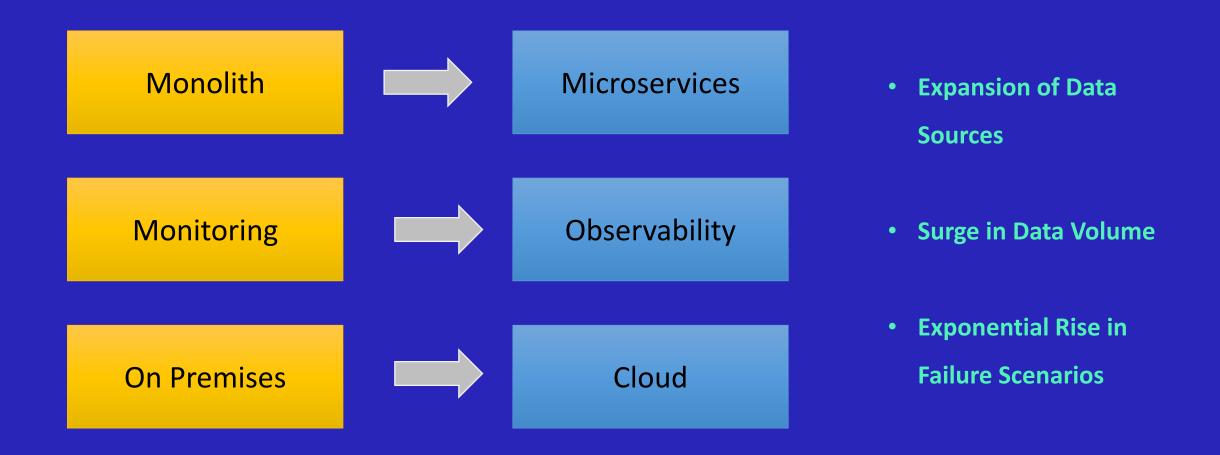
## **Key pillars of Success**

- Reduce organizational Silos
- Accept failures as normal
- Implement gradual changes
- Leverage tooling and automating
- Measure everything

## **Principles**

- Observability
- SLI, SLO and Error Budgets
- System architecture and Recovery Objectives
- Release & Incident Engineering
- Automation
- Resilience Engineering
- Blameless Postmortems

# Navigating Digital Transformation: Managing Ever-Growing Complexity



## Operations is a Software Problem

## By 2026,

Code written by developers/humans will be reduced by 50% due to generative AI code generation models

## GenAl Emerges: Unveiling the Power of Next-Gen Artificial Intelligence

# Generative AI, refers to machine learning models that can create new, original content like text, images, audio and more



#### Text Generation:

- Articles & stories GPT-3 can generate news articles and fiction stories
- Code GitHub Copilot suggests context-relevant code for developers



#### Image Generation:

- Art DALL-E 2 creates original digital art from text prompts
- Photos Generative models can edit or enhance photos



#### Video Generation:

Al models can generate or edit video content



#### Drug Discovery:

Models can analyze chemical compounds and suggest new drug candidates



#### **Other Creative Applications:**

- Generating logos, recipes, fashion designs, architectural drawings
- Personalizing content like customized ads or product recommendations

# Unveiling the Potential: The Capabilities of LLM (Large Language Models)

## What can LLMs do?

## Inputs Natural Language Structured Data Multi-Lingual text Transcription Computer Code

#### Operations

Text or Code Generation

Text Completion

Text Summarization

Text Translation

Sentiment Analysis

Text Correction

Text Manipulation

Named Entity Recognition

Question Answering

Style Translation

Format Translation

Simple Analytics

#### Outputs

Natural Language Text Structured Data

Multi-Lingual Text

**Computer Code** 

## Gartner.

14 © 2023 Gartner, Inc. and/or its affiliates. All rights reserved. Gartner is a registered trademark of Gartner, Inc. and its affiliates.

# Navigating Challenges: Risks Associated with Large Language Models

## **Model Risks**

- Bias
- Misinformation
- Privacy
- Lack of context
- Lack of creativity
- Lack of Explainability

## **Misuse Risks**

- Misinformation
- Cyberbullying
- Phishing
- Automated Generation
- Fraud
- Malware

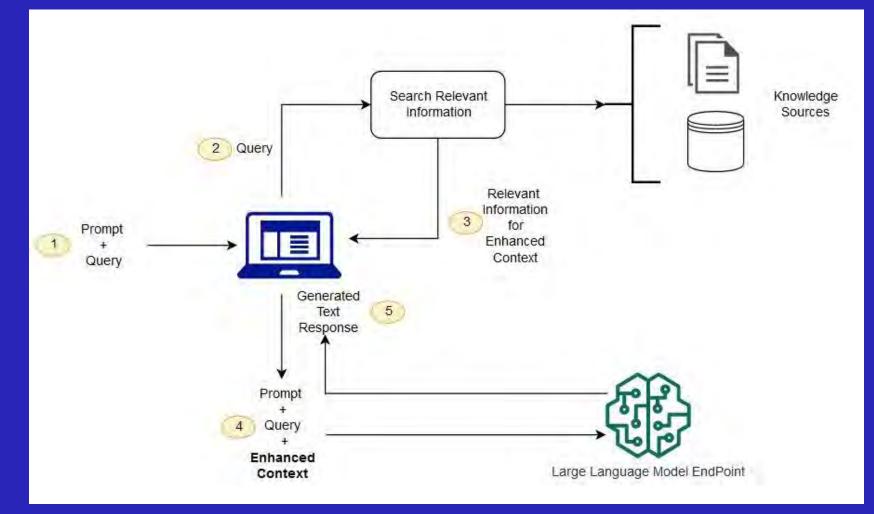
## **Usage Risks**

- Intellectual Property
- Hallucinations
- Copyright

# Addressing Model Challenges: Finding Effective Solutions

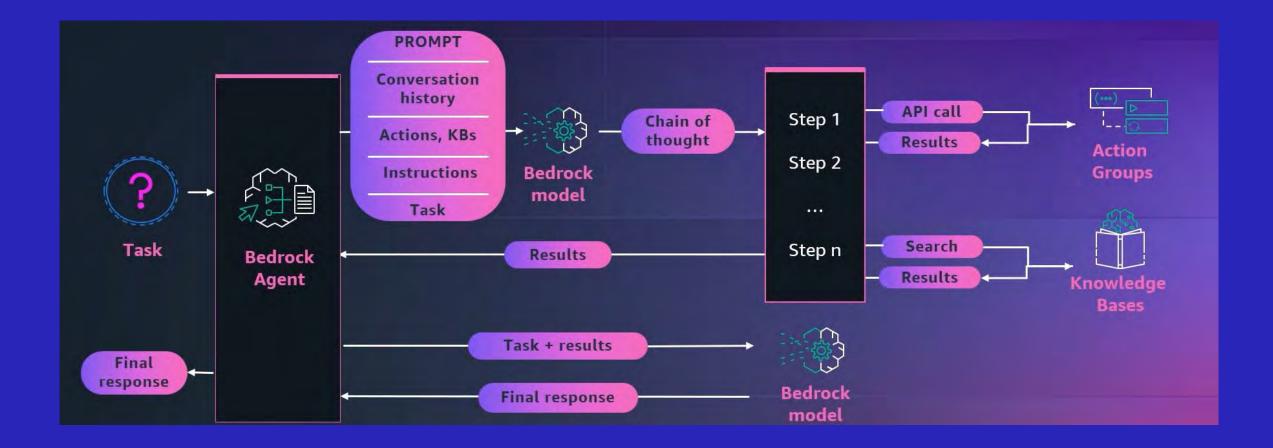
- RAG / Knowledge bases
- LLM Agents
- Prompt Engineering

# Retrieval-Augmented Generation (RAG) / Knowledge bases



aws.amazon.com

## LLM Agents



aws.amazon.com

## Prompt Engineering Best practices

- **Clear Objectives**: Define clear and specific objectives for each prompt to guide model generation effectively.
- **Relevant Context**: Provide relevant context to the model to ensure accurate and meaningful responses.
- **Continuous Evaluation**: Regularly evaluate prompt effectiveness and adjust as needed to improve model performance.
- Iterative Refinement: Continuously refine prompts based on model outputs and user feedback for ongoing improvement.
- Ethical Considerations: Consider ethical implications when crafting prompts to promote responsible AI usage.

#### LLMs - 2024

## Prompt Engineering Properties

| Properties               | Details                                                                                                                                          |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Temperature              | <ul> <li>Controls randomness in model output. Higher temperatures yield more diverse responses; lower<br/>temperatures, more focused.</li> </ul> |
| Top-p Sampling           | <ul> <li>Controls output diversity by considering only most probable tokens.</li> </ul>                                                          |
| Top-k Sampling           | <ul> <li>Considers only k most probable tokens for generating next token.</li> </ul>                                                             |
| Max Token Length         | <ul> <li>Sets maximum length of generated text.</li> </ul>                                                                                       |
| Stop Tokens              | <ul> <li>Signals model to stop generating text when encountered.</li> </ul>                                                                      |
| Repetition Penalty       | <ul> <li>Penalizes model for repeating text, encouraging diversity.</li> </ul>                                                                   |
| Presence Penalty         | <ul> <li>Penalizes model for generating already generated tokens.</li> </ul>                                                                     |
| Batch Size               | <ul> <li>Determines number of input sequences processed simultaneously.</li> </ul>                                                               |
| Inference Latency        | <ul> <li>Time taken for model to generate output given input.</li> </ul>                                                                         |
| Model Accuracy & Metrics | Task-specific metrics like accuracy, perplexity, or BLEU score.                                                                                  |

## SRE 2.0

- GenAl in Observability
- GenAl in SLI, SLO, and Error Budgets
- GenAI in System Architecture and Recovery Objectives
- GenAl in Release & Incident Engineering
- GenAl in Automation
- GenAl in Resilience Engineering
- GenAl in Blameless Postmortems

# GenAl in Observability

Automate the creation of comprehensive dashboards tailored to specific user needs

- Recommend dynamic adjustments to monitoring configurations based on workload changes..
- Recommend personalized alert thresholds based on historical data and system behavior.
  - Automatically classify and prioritize incidents based on severity and impact.

- Automatically generate anomaly detection models for monitoring system metrics.
- Predict potential system bottlenecks and recommend proactive optimizations.
- Analyze log data to automatically identify root causes of performance issues.
- Predict future resource utilization trends and recommend scaling strategies.
- Identify correlations between different system metrics to enhance troubleshooting.
- Analyze network traffic patterns to detect and prevent potential security threats.

Low

High



Feasibility

# Use Case - Analyze log data to automatically identify root causes of performance issues.



### Feedback Loop:

- Human validation of results.
- Feedback from incident resolution.
- Continuous learning.

## Ways to improve output:

- Enhancing algorithms.
- Providing domain-specific data.
- Integrating feedback effectively.
- Promoting collaborative human-Al interaction.

# GenAl in SLI, SLO, and Error Budgets

- Recommend adjustments to error budgets based on usage patterns and system performance.
- Generate insights on the relationship between SLIs, SLOs, and business KPIs.
- Identify and prioritize critical SLIs based on their impact on user experience and business objectives.
  - Analyze historical incident data to predict potential adjustments to SLIs and SLOs.
- Automatically generate initial drafts of SLIs and SLOs based on system architecture.

- Recommend optimal error budget allocations based on business priorities and user expectations.
- Predict potential violations of SLOs and recommend proactive measures to prevent them.
- Analyze user satisfaction metrics to determine the impact of SLA violations on customer experience.
- Automate the tracking and visualization of error budget burn-down rates.

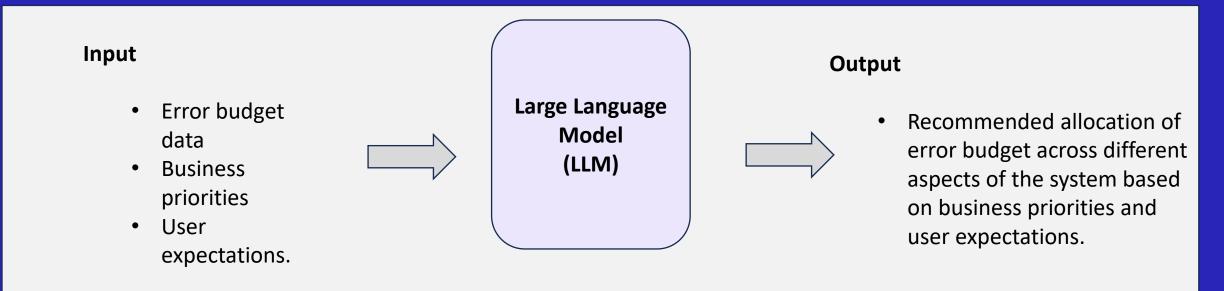
**Business Value** 

High



Feasibility

Use Case - Recommend optimal error budget allocations based on business priorities and user expectations.



## Feedback Loop:

- Evaluation of recommendations by stakeholders.
- Adjustments based on feedback and changing priorities.
- Continuous learning.

## Ways to improve output:

- Incorporating stakeholder feedback into the recommendation process.
- Updating models based on changing business priorities.
- Continuous refinement based on user expectations.

# GenAl in System Architecture and Recovery Objectives

High

Lo⊻

- Generate recovery objectives based on business requirements and SLA commitments.
- Analyze historical incident data to identify patterns and trends in system failures.
- Generate personalized recovery playbooks for common incident scenarios.
- Analyze system architecture diagrams to identify potential single points of failure.

- Predict the impact of different failure scenarios on system availability and performance.
- Recommend proactive measures to enhance system reliability and minimize downtime.
- Predict potential recovery times for different types of incidents based on historical data.
- Recommend resilience improvements to system architecture based on failure mode analysis.
- Automate the creation of disaster recovery plans tailored to specific system configurations.
- Analyze the effectiveness of recovery strategies and recommend optimizations based on past incidents.

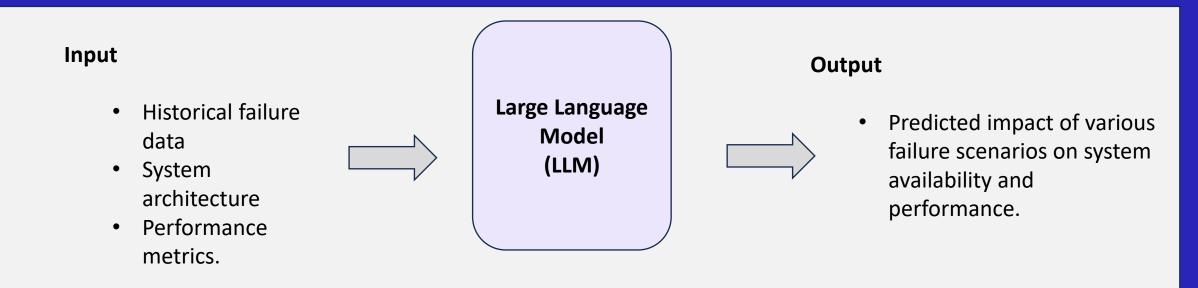
Low



Feasibility

Business Value

# Use Case - Predict the impact of different failure scenarios on system availability and performance.



## Feedback Loop:

- Validation of predictions against real-world incidents.
- Updating models based on observed impacts and accuracy of predictions.
- Continuous learning from new data.

## Ways to improve output:

- Incorporating feedback from incident resolution into prediction models.
- Enhancing models with additional factors influencing system availability and performance.
- Continuous refinement based on observed impacts and feedback

## GenAl in Release & Incident Engineering

High

- Analyze past incident reports and postmortem analyses to identify common failure patterns.
- Recommend preventive measures to mitigate the risk of incidents during future releases.
- Generate insights on the root causes of incidents and recommend long-term solutions to prevent recurrence.
  - Automatically generate release notes based on code changes and impact analysis.

Low

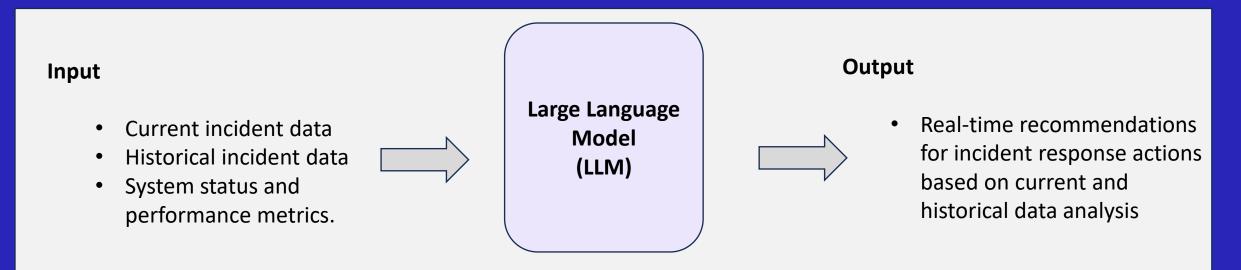
Feasibility

- Automate the creation of incident response runbooks and playbooks for efficient resolution.
- Predict potential incident severity based on incoming alerts and historical incident data.
- Provide real-time incident response recommendations based on the current situation and historical data.
- Predict potential release risks based on historical release data and code quality metrics.
- Analyze the impact of releases on user experience and satisfaction metrics.
- Recommend optimized release cycles and promotion strategies based on system performance.

High

Low

 Use Case - Provide real-time incident response recommendations based on the current situation and historical data.



### Feedback Loop:

- Evaluation of recommendations' effectiveness in resolving incidents.
- Incorporation of feedback into future recommendations.
- Continuous learning from incident outcomes.

### Ways to improve output:

- Integration of real-time feedback from incident resolution into recommendation models.
- Enhancement of models with additional contextual data for more accurate recommendations.
- Continuous refinement based on observed effectiveness and feedback.

## GenAl in Automation

- Recommend new automation opportunities based on manual workflows and repetitive tasks.
- Predict potential bottlenecks in manual processes and suggest automation solutions.
- Automate the identification and prioritization of repetitive tasks (toil) for optimization.
- Generate templates for routine operational tasks to streamline automation workflows.

- Analyze historical automation data to identify opportunities for process optimization.
- Automate the deployment and management of infrastructure resources based on workload demands.
- Analyze the effectiveness of automation workflows and recommend improvements based on performance metrics.
- Recommend automated testing frameworks and tools to improve release quality.
- Predict the impact of automation on operational efficiency and resource utilization.
- Generate personalized automation playbooks for different operational scenarios.

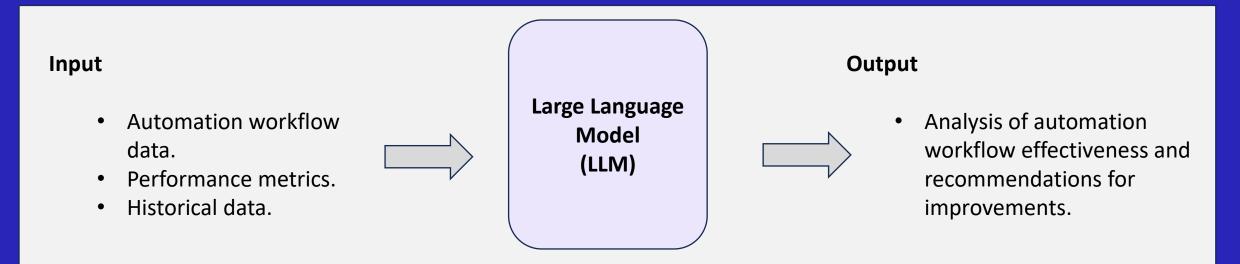
High

**Business Value** 



Feasibility

Use Case - Analyze the effectiveness of automation workflows and recommend improvements based on performance metrics.



## Feedback Loop:

- Evaluation of recommendations' effectiveness in resolving incidents.
- Incorporation of feedback into future recommendations.
- Continuous learning from incident outcomes.

### Ways to improve output:

- Evaluation of recommended improvements' impact on workflow performance.
- Incorporation of feedback into future analysis and recommendations.
- Continuous learning from performance outcomes.

# GenAl in GenAl in Resilience Engineering

High

**Business Value** 

- Identify potential failure points and vulnerabilities in system architecture and configurations.
- Recommend personalized chaos engineering experiments based on system behavior and workload patterns.
- Predict the impact of chaos experiments on different components of the system.
  - Generate test scenarios for chaos engineering experiments based on failure mode analysis.

Low

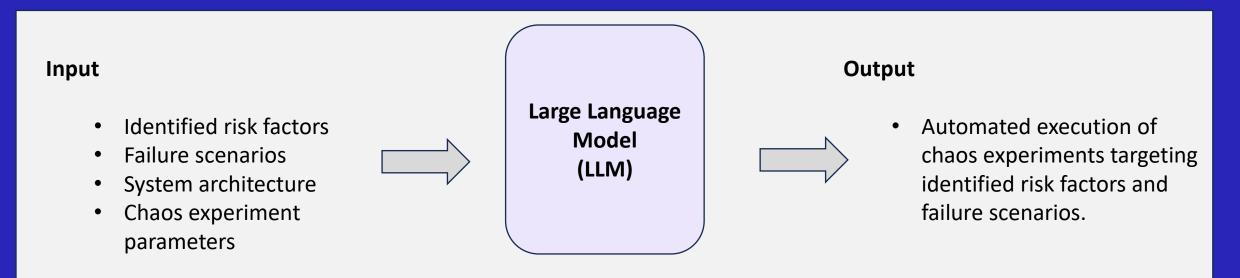
- Automate the execution of chaos experiments based on identified risk factors and failure scenarios.
- Predict the effectiveness of resilience strategies in mitigating potential failures and incidents.
- Automate the documentation of resilience engineering practices and lessons learned from incidents and experiments.
- Analyze the results of chaos experiments to identify weaknesses and areas for improvement.
- Recommend proactive measures to enhance system resilience and fault tolerance.
- Generate insights on the relationship between system complexity and resilience.

Lo≷

Feasibility

High

Use Case - Automate the execution of chaos experiments based on identified risk factors and failure scenarios.



## Feedback Loop:

- Evaluation of the impact of chaos experiments on system behavior and stability.
- Incorporation of feedback into future chaos experiment automation.
- Continuous learning from experiment outcomes.

## Ways to improve output:

- Integration of real-time feedback from chaos experiments into automation algorithms.
- Enhancement of automation models with additional contextual data for more accurate experiment selection.
- Continuous refinement based on observed outcomes and feedback.

## GenAl in GenAl in Blameless Postmortems

ir rα • Δ

High

- Recommend areas for improvement in incident response processes to prevent recurrence.
- Automate the documentation of postmortem action items and follow-ups for accountability.
- Generate insights on the root causes of incidents and recommend preventive measures.
- Analyze incident data and generate drafts of post-mortem reports for efficient analysis.

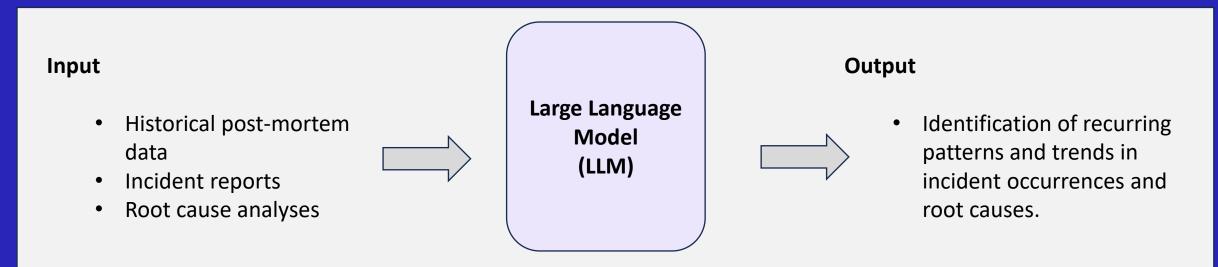
- Predict potential post-mortem findings based on incident characteristics and impact analysis.
- Analyze historical post-mortem data to identify recurring patterns and trends in incidents.
- Analyze the effectiveness of post-mortem practices and recommend improvements based on lessons learned.
- Recommend changes to organizational processes and procedures to improve incident response.
- Predict the impact of incident resolution actions on system reliability and performance.
- Automate the identification of systemic issues and recommend long-term solutions.

Lo≷



Feasibility

Use Case - Analyze historical post-mortem data to identify recurring patterns and trends in incidents.



## Feedback Loop:

- Validation of identified patterns against real-world incidents.
- Incorporation of feedback into future analysis and pattern recognition.
- Continuous learning from incident data.

#### Ways to improve output:

- Integration of real-time feedback from incident resolution into pattern recognition algorithms.
- Enhancement of analysis models with additional contextual data for more accurate trend identification.
- Continuous refinement based on observed patterns and feedback.

## Measure Progress with Business Outcomes

- Improved Alignment with SLOs and Error Budgets
- Increased Change Frequency

SRE - 2024

- Reduced Change Failure Rate
- Reduced Lead Time for Change
- Reduced Mean Time to Detect (MTTD)
- Reduced Mean Time to Repair (MTTR)
- Increased Mean Time Between Failures (MTBF)



## Best practices

- **Clear Objectives:** Define specific goals for each use case to guide the generative AI process effectively.
- **Relevant Context**: Provide accurate and relevant data and context to ensure the generated outputs align with real-world scenarios.
- **Continuous Evaluation**: Regularly assess the quality and effectiveness of generated outputs and refine the models based on feedback.
- Ethical Considerations: Consider ethical implications in the use of generative AI, ensuring outputs are fair, unbiased, and respect privacy.
- **Collaborative Approach**: Involve domain experts and end-users in the generative AI process to incorporate diverse perspectives and improve outcomes.
- **Documentation:** Document the generative AI process, including data sources, model architectures, and decision-making criteria, for transparency and reproducibility.
- Iterative Improvement: Continuously iterate on the generative AI models based on insights gained from real-world implementation and user feedback to enhance performance and reliability.



# Pitfalls to Avoid

SRE - 2024

- **Ignoring Ethical Considerations**: Neglecting to address potential biases or ethical concerns in generated outputs can lead to unintended consequences.
- Lack of Validation: Failing to validate generated outputs against real-world data or expert judgment may result in inaccurate or irrelevant recommendations.
- **Disregarding User Feedback**: Ignoring feedback from end-users or domain experts can lead to mismatches between generated outputs and actual user needs.
- Static Models: Avoid treating generative AI models as static solutions; instead, regularly update and refine them to adapt to evolving requirements and environments.



