
Mastering Efficient 

Code Reviews
A PATH TO SUPERIOR CODEBASE

1

ISRAEL HERINGER



About me

• Family

• Brazilians living in the UK

• Games & Travelling

• Software Engineer @ Meta

2



Introduction

3



“
”

A code review is a process where 

someone other than the author(s) 

of a piece of code examines that 
code.

https://google.github.io/eng-practices/review/

4



Why?

 Discover bugs earlier

 Improve code quality

 Enhance security

 Share knowledge

 Mentor newer engineers

 Maintain compliance

5



Code Review is not

 Blaming or shaming someone’s code

 Showing off skills

 Executing the code

6



3 main approaches

 Pair programming

 Over-the-shoulder reviews

 Tool-assisted reviews 

7



Looking inward
UNDERSTANDING THE CONTEXT

8



Looking inward… the team

 Seniority

 Code familiarity

 Work dynamics

 Communication style

 Global distribution

9



Looking inward… the code

 Coding standards

 Testability

 Riskier paths

 Legacy vs new code

10



Looking inward… the goals

 Finding bugs?

 Code quality?

 Testing coverage?

 Onboarding newer engineers?

Main issues and goals change over time

11



Efficient code reviews

12



10 lines: 10 comments

500 lines: Looks good to me

13



Review carefully

 Actually read the code

 Efficient ≠ Fast

 Not a stamp competition

 Leave clear and actionable comments

14



Focus on what’s important

 Functionality

 Design

 Complexity

 Tests & Evidences

 Style

 Consistency

 Naming

 …

15



What about…

 Comments

 Documentation

 …

Relevance changes with context

Be explicit when nitpicking

16



Automate what’s possible

 Auto-formatters

 Linters

 CI warning/errors

17



Code Review is not an individual task

 Write code for others

 Code is more often read than written

 Big changes mean harder and longer reviews

 Split into smaller and meaningful changes

 Avoid judgemental and bossy language

 Have you considered…

 Don’t forget testing scenarios and evidences

18



Kicking off the process

19



Keep engineers’ autonomy

 Avoid the “gatekeeper”

 Map exceptional scenarios and workarounds

 Code Review should not be a high-friction process

20



Encourage open discussions

 No finger-pointing

 Team process

 Review pain points

 Evaluate results

 Iterate on the process

Recognize contributions

21



Some ideas to unblock the start

 Selected projects

 Critical code paths

 Sampling reviews

 Non-blocking reviews

Start small, grow as the team gets used to the process

22



Wrap up

23



Wrap up

 What is (and what is not) Code Review and why

 Understanding the context of the team, code and goals

 What to look for when reviewing code

 What to avoid during code review

 Code Review is a team process

 Some ideas to help with the process kick-off

24



Thank you

► /israelhlc

25


