
Balancing Speed and 
Accuracy in Model 

Development 

By Ivan Popov



Data Scientist at Abound & Render, London, UK
- 3 years of Machine Learning 

experience in FinTech and 
Computer Vision

- 4 years of experience as a Data 
Analyst

- DevOps and Data Engineering 
Expert

- Co-founded a business and grew 
it from 0 to 80,000 registered 
users with 1.5M monthly site 
traffic



Today's talk
- The Essence of Speed and Accuracy Balance

- Identifying Your Model’s Needs

- Optimisation Strategies



The Essence of Balance: Speed vs Accuracy



Factors impacting accuracy and speed
- Complexity of the model architecture

- Amount and quality of input data 

- Hardware



The Business Impact of Speed and Accuracy
Context is the key 



Real-World Examples
- Loan industry: speed is prioritised

- E-commerce: equal balance between the 

speed and accuracy

- Medical diagnostics: accuracy is prioritised



Balancing Act: Speed, Accuracy, and Cost
Is money always the answer?



Strategic Importance of the Balance
Mastering the balance between model speed 
and accuracy can serve as a significant 
competitive advantage



Identifying Your Model's Needs



How to Understand Business Objectives
- What is the purpose of the model? 
- Is it for internal use or customer-facing?
- What are the desired outcomes of the model? 
- What are the KPIs? 
- Who are the end-users of the model? 



Scenarios for ML-models
- Customer-facing applications: speed is often 

more critical than accuracy
- Internal analytics: accuracy is more important 

than speed



Optimisation Strategies



Training data quality and quantity
Get yourself a dataset with good quality 
data and good labels



What is a good dataset?
- Includes samples from 

multiple writers and different 
writing styles 

- Has a balanced distribution of 
digits

- All images have a clear label 
associated with them



What is a bad dataset?
- Only includes handwritten 

digits from a single writer 

- Misses certain digits or 

labels for the images.



Data Pre-processing
- Data cleaning

- Data normalisation 

- Feature generation



How to find inefficiencies in data pre-processing?
𝚝𝚒𝚖𝚎()

cPython 

yappi



yappi



Most Common Inefficiencies
1. Extensive use of .𝚊𝚙𝚙𝚕𝚢() in pandas

If you use .𝚊𝚙𝚙𝚕𝚢() to a single column, try 

to find simpler execution, e.g., 𝚍𝚏
['𝚛𝚊𝚍𝚒𝚞𝚜']*𝟸

If you use .𝚊𝚙𝚙𝚕𝚢() to multiple columns, 

avoid the .𝚊𝚙𝚙𝚕𝚢(,𝚊𝚡𝚒𝚜=𝟷) format. Write a 

standalone function, and then use it on the 

.value𝚜 of the Pandas Series

2. Performing calculations more times 
than needed

If you have metadata, perform the calculation once 
per group

Use numpy instead of pandas where it is possible



Feature Selection
Select the most important features and remove 

irrelevant ones to simplify your model and 

reduce the risk of overfitting



SHAP Values for Feature Selection
 Can be used to interpret any machine learning model:

- Linear regression

- Decision trees

- Random forests

- Gradient boosting models

- Neural networks



SHAP Values for Feature Selection
Useful when dealing with 

high-dimensional, complex 

datasets



Model selection
Try using simpler models like 

XGBoost and LightGBM



XGBoost
- Widespread usage: employed since 2014.

- Flexibility

- DMatrix

- Regularisation

- Depth-first order

- Computational considerations: may be slower with large 

datasets 



XGBoost



LightGBM 
- Lightning-fast performance

- Efficient with large datasets

- Categorical data handling

- Regularisation

- Best-first order 

- Computational considerations: memory intensive



LightGBM



How to Choose the Best Option
Experiment and decide



A Quick Recap
● Balancing speed and accuracy often depends on the context or the field of 

application.

● To identify your model's needs, align its purpose with business goals and tailor 

the model to meet user expectations.

● Make sure you acquire a robust dataset with quality data and accurate labels.

● Experiment with simpler models like XGBoost and LightGBM. 

● Use profilers such as cProfile and yappi to find bottlenecks in your code.

● The data pre-processing step is often the most frequent place for the bottlenecks.



Thank you for your time!



References
● LightGBM documentation and installation guides - https://lightgbm.readthedocs.io/en/stable/

● XGBoost documentation and installation guides - https://xgboost.readthedocs.io/en/stable/

● cProfile documentation - https://docs.python.org/3/library/profile.html

● yappi documentation and installation guides - https://pypi.org/project/yappi/

● shap documentation and installation guides - https://shap.readthedocs.io/en/latest/

https://lightgbm.readthedocs.io/en/stable/
https://xgboost.readthedocs.io/en/stable/
https://docs.python.org/3/library/profile.html
https://pypi.org/project/yappi/
https://shap.readthedocs.io/en/latest/

