
The Three Python
Concurrency Patterns:
Which one to choose?

Introduction
Name: Iyanuoluwa Ajao

https://twitter.com/iyanuashiri

https://github.com/iyanuashiri

https://iyanuashiri.hashnode.dev

https://theriseofai.substack.com

Software Engineer

https://twitter.com/iyanuashiri
https://github.com/iyanuashiri
https://iyanuashiri.hashnode.dev
https://theriseofai.substack.com

What is Concurrency
Concurrency is when two or more tasks run in an overlapping manner. Examples
are Threading(1st) and Asyncio(2nd)

ANALOGY. Watching two movies using two movie players but you pause and play
while the first or second one is buffering.

https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/asyncio.html#module-asyncio

What is Parallelism
The difference between parallelism and concurrency.

Parallelism is when two or more tasks run at the same time. Most times, the
different tasks make use of different CPUs. An example is multiprocessing(3rd
Python concurrency pattern). Parallelism is a specific type of concurrency.

ANALOGY. Watching two movies using two movie players without pause and play.

https://docs.python.org/3/library/multiprocessing.html

Problems well suited for concurrency
● CPU-bound problems. Example is mathematical calculations

● IO-bound problems. Example is making a network call

We use a session object from requests library.

This is a feature in requests. When “you’re making several requests to the same
host, the underlying TCP connection will be reused, which can result in a
significant performance increase.”

session = requests.Session()

session.get() == requests.get()

Threading
A thread is a different flow of execution. The threads are not executed at the same
time. There are two major differences from the first program.

ThreadPoolExecutor. This creates a Thread, a Pool of threads that run
concurrently, and an Executor that manages how the threads run.

The with keyword shows it implements a context manager.

with open(newfile ‘w’) as file:

The with allows ThreadPoolExecutor to create and free up the threads.

The get_session() function for creating a session object.

Creating a session object manually is not thread-safe, so we are employing this
method.

This is one of the disadvantages of Threading.

The operating system determines when a task is paused and another is played.
So data shared between threads must must be protected or thread-safe.

 requests.Session() is not thread-safe.

Asyncio
The major difference between this program and the non-concurrent program is
that we ditch requests library for aiohttp. To take advantage of asyncio, you need
async compatible libraries.

requests 3 is currently being developed with asyncio in mind. But until then, we
use aiohttp.

We notice the async/await keywords for defining the function and the with
keyword. await means that a task will take a while and it should give up control to
the event loop. You will get syntax errors if your function has an await in it but not
marked with async.

async with works just like await but for creating a context manager.

Asyncio has nothing like thread-safety so we can create a session object here
unlike the example in Threading.

asyncio.run() # Python 3.7

The asyncio.get_event_loop() manages how and when the tasks are run.

Multiprocessing
multiprocessing.Pool() creates and can determine the number of pools to create.
By default, it creates the equivalent of the number of CPUs in your computer.

Threading vs Asyncio
● Implementing threads well, you need to understand some other things. E.g

Lock to prevent data race in Threads and Queue to manage multiple Threads.
This has been abstracted with ThreadPoolExecutor.

● Threads require RAM memory.
● Starting a Thread is expensive.
● Asyncio requires async compatible libraries
● Asyncio uses less resources when compared with Threading.
● Asyncio is faster.
● Asyncio wins

Multiprocessing vs Asyncio or Threading
● Choose Multiprocessing when what you want to do CPU-bound tasks not

IO-bound tasks.
● Multiprocessing runs on multiple CPUs.
● Asyncio is when you want to do IO-bound tasks.
● Asyncio and Threading runs on a single CPU.

Thank You!

