CONF42

Beyond Traditional Databases:
Introducing the Type lll Architecture

Javier Ramirez

@supercoco9
Fast Data Advocate

L <" QuestDB

When was the last time you wished your
database had a more proprietary data
format?

20 years ago: No fast databases. No analytics(

e Databases followed the OLTP pattern.
e Heavily biased for reads, not writes
e Designed for a few millions of rows (best case)

e Speed up queries using indexes

The database is the bottleneck

- Every developer in the 90s

Then there was OLAP and NoSQL

e NoSQL optimized for fast inserts and fast
non-analytical queries.

e OLAP optimized for large batch inserts and fast
analytical queries via complex indexes and
materialization/ denormalization/ duplication.

Then there was OLAP separation of storage (

e Following success of Map/Reduce and HDFS for data
processing, many OLAP databases separated storage
from computation, allowing for distributed queries.

e The data lake concept was created.

e \rites were still mostly batched.

OLAP = Immutable* (

o File formats typically used in OLAP made it very costly
to update individual records.

e Cloud-based object stores typically work with
immutable files with no random-access updates.

* Until recently

Some ugly truths about streaming data

It can get very big. It never stops. Always incomplete.

It will burst, lag, and arrive out of order. It will get
updated after you've already emitted results.

Individual data points lose value over time, but long-term
aggregations are priceless.

Analysts preter low latency and data freshness.

My fast database definition*:

erformant frequent I

and performant

Designed for

frequent
datasets.

* My own biased definition. But this is my talk, so just setting the context

Time Series Databases Enter the Scene

e Time Series Databases specialise in very fast ingestion,
very fast queries over nascent data, and powerful
time-based analytical queries.

e They focus on nascent data, deleting, downsampling,
or slowing-down older data.

o questdb / questdb

o

de

© Issues

565

11 Pull requests

19

) Discussions

® Actions

[Projects @ Security 2

I Insights

. questdb Public

P master ~ ¥ 28 Branches © 111 Tags

4 ideoma test(core): test checkpoint create/restore v

github

idea

artifacts

benchmarks

ci

compat

core

examples

i18n

pkg/ami/marketplace

utils

win4sve
[.all-contributorsrc
(] git-blame-ignore-revs
[_gitignore
[.gitmodules
[CODEOWNERS
[3 CODE_OF_CONDUCT.md
[CONTRIBUTING.md
[LICENSE.txt

[README.md

<> EditPins ~

Q Gotofile Add file

18 hours ago

files hardlink copy

ci(build): invoke questdb.io build hook on release publish ..

chore(core): remove jemalloc from no-jre build (#4488)
ci(core): release support pipeline to simplify the release
perf(core): introduce static metadata cache (#4848)
test(core): test checkpoint create/restore with files hardli...
build: 8.1.1 (#4928)
test(core): test checkpoint create/restore with files hardli...
build: 8.1.1 (#4928)
chore(docs): Vietnamese README translation (#4358)
fix(sql): set default directory for read_parquet() and SQL ...
build: 8.1.1 (#4928)

feat(core): configure to roll log files daily by default when ...
chore(docs): Vietnamese README translation (#4358)
chore(build): git blame to ignore the reformatting commit ..
chore(core): add rust language Infrastructure (#4439)
feat(sql): new json_extract function to extract JSON fiel...
chore: switch to team-based co ners (#1754
chore(docs): add Prettier formatting to project files (#1720
docs(core): add code formatting info to contributing guid..
fix: license changed to Apache 2.0. Fixed #80

docs(core): update coinbase to okx in README.md (#489..

© Watch 135

* <> Code

0 4,874 Commits

2 weeks ago
4 months ago
3 days ago

3 days ago
18 hours ago
last week

18 hours ago

6 months ago
2 weeks ago
last week

2 months ago
6 months ago
2 years ago
5 months ago
2 months ago
3 years ago

3 years ago

2 years ago

3 weeks ago

Starred 14.3k

About

QuestDB is an open source time-series
database for fast ingest and SQL queries

& questdb.io

java ot postgres sql database

big-data time-series analytics cpp

grafana postgresql simd
low-latency financial-analysis tsdb
hacktoberfest time-series-database

questdb

[0 Readme
&5 Apache-2.0 license
% je of conduct

Security policy

operties
14.3k stars

135 watching

1.1k forks

Report repository

Releases &5

© 811 (L

eeks ago

+ B4 releases

Contributors 146

G008
ERLrR.T®

+ 132 contributors

[[github.com/questdb/questdb

Q Type (7] to search

QuestDB

,‘b'.‘\

Column-tirst parallel SQL engine with JIT compiler
Column-tirst, partitioned data store, sorted by timestamp.
No indexes needed*. Data immediately available after write.
Predictable ingestion rate, even under demanding workloads.

Built-in event deduplication. Row updates and upserts.

QuestDB in action: quick showcase

https://dashboard.demo.questdb.io/d/fb13b4ab-b1c9-4a54-a920-b60c5fb036
3f/public-dashboard-questdb-io-use-cases-crypto?orgld=1&refresh=750ms

https://demo.questdb.io

https://github.com/questdb/time-series-streaming-analytics-template

https://dashboard.demo.questdb.io/d/fb13b4ab-b1c9-4a54-a920-b60c5fb0363f/public-dashboard-questdb-io-use-cases-crypto?orgId=1&refresh=750ms
https://dashboard.demo.questdb.io/d/fb13b4ab-b1c9-4a54-a920-b60c5fb0363f/public-dashboard-questdb-io-use-cases-crypto?orgId=1&refresh=750ms
https://demo.questdb.io
https://github.com/questdb/time-series-streaming-analytics-template

Parallel Write Ahead Log (WAL)

request next available txn

data / schema - and schema changes [N
changes w WAL 1 carried out by other WALs
txn

node1l structure version

~ Sequencer

C) wmal
w WAL2) ﬁ
& WAL 3 || N v

J

node?2

Storage Engine - file system layout

Var-size
Column files
/_H
2024—-04-11 d
Partition 1
o O =3
g 2 ¢ =
o s B
2024-04-12 d
- =l = Partition 2
3 EE E
5§ ©
Fixed-size

Column file

f— db
|— Table

Physical layout of table storage S—

—— _archive
— columnl.d
— column2.d
— column2.k

F—— Partition 2

—— _archive
— columnl.d
— column2.d
— column2.k

One WALx subfolder per table and connection I
e
— _txnlog

txn_seq folder to serialize transactions across parallel | e
L—oe

WAI_ fOldeI’S — _meta

_event file as transaction index for each WAL folder .
L

_meta
_event
columnl.d
column2.d

“meta files with schema version/data

_meta
_event
columnl.d
column2.d

One* file per column, with the binary data

_cv file for Commit Verification L neta
— _txn

Ingress/Egress paradox

e Columnar (or column-first) data store favors egress.

e Most nascent data ingress is row-first.

Multi-primary ingestion (

e Metadata and information about cluster members is coordinated via a sequencer
backed by FoundationDB.

e Optimistic locking for conflict resolution.

e Client libraries transparently get the addresses of available primaries and replicas to
send data and queries.

In-process or
FoundationDB

WAL) g Sequencer

Share-nothing,
append-only, same or
different servers

Our ability to look at data and see
trends helps us to make better
predictions about what comes next.

— Tim Berners-Lee, Inventor of the World Wide
Web

New open file formats

e The hadoop ecosystem developed the Apache Hudi format,

Netflix developed Apache Iceberg, and Databricks developed
Delta Lake. The three of them are open formats and allow for

mutable data, transactions, schema evolution, and streaming.

e They are open, so multiple data engines and applications can
share the same datasets with no duplication.

Y

Data Science and ML

e Dashboards and reports query over billions of records to produce a
result with just a few filtered/aggregated rows.

e Might want to use the whole unaggregated dataset directly, or most of
the dataset minus some outliers, or a subset of columns. On most
databases that means a slow export, and expensive data duplication.

e Might want to use an aggregated downsampled version of the dataset,
converting from multi billions of records to multi millions. Serializing and
deserializing is slow and resource consuming.

What the present looks like

e |akehouse Engine architecture offers the most flexibility, TSDBs generally
not there yet.

e TSDBs double-down on the ingress performance, OLAP are on the backfoot.
e OLAP double down on storage cost and analytical workloads (queries).
e OLAP query engines are sophisticated, TSDBs are on the back foot.

e TSDB engines are simpler to operate. OLAP is more complex and sometimes
cloud-only.

The type Il database

e Distributed computing, with separate storage.

e Data is stored in open formats, for easier collaboration, no
deserialization, and no duplication. With file compression/low cost
storage.

e Allow data consumers to bypass the database on egress and ingress.
e Support for structured and semi-structured data (JSON...).

e Data egress is as performant as data ingress. Multi-million records per
second (aggregated or not) can be streamed out of the database.

Avoiding streaming data deserialization: Apache Arrow

e Open Memory format, open database API, and open SQL dialect.
e Initially developed by Dremio, but widely adopted by many projects.
e Adopted by tools like Apache Spark, Pandas, Dask...

e Provides libraries for multiple programming languages (e.g., C++,
Java, Python, R, Go...).

ADBC. like JDBC/ODBC, but with Arrow

e A set of abstract APIs in different languages for working with
databases and Arrow data.

® Result sets of queries in ADBC are all returned as streams of
Arrow data, not row-by-row. Client app does not need to convert

rows to columns.

e Zero-copy. Client can use directly the values sent over the wire.

The (near) future of QuestDB

Address the gap between time series and OLAP queries.
Distributed Query Engine, decoupled from storage.

High performance ingress (via streaming protocol) and egress via
ADBC.

Pgwire still supported for compatibility with the ecosystem.

Data is stored in compressed parquet.

The database engine can read parquet data produced externally.

,‘b'.‘\

Balancing hot and cold data: the data first mile

Column store (Disk) Object store

today - 3d ——— “today - 3d".parquet
today - 2d —
today - 1d —— “today - 1d".parquet

“today - 2d”.parquet

today (hot)

WALLT - WAL2 - WAL.n —

Replication Store

QuestDB Type Il Architecture

Storage

)
ér

Ingestion Compute &

CuvE

N

=
o
[
b
=
=
>
LS
©
£
=
5
=
>
=
@

(A ® Ce®

o e e co (19
CRJC

Clients

Writer Reader

C

Clients

L,

| QuestDB File
| C‘ Format <

. ‘ Y (4]

Ingress

T |
Streaming

Query

, Y

Egress!

Dashboards

Ty

Data science and ML

QuestDB and Parquet Quick Demo

QuestDB OSS

QuestDB Enterprise

\

https://github.com/questdb/questdb
https://questdb.io/enterprise/

We ¢’ contributions

and GitHub W stars
https://github.com/questdb/questdb

https://questdb.io

https://demo.questdb.io

https://slack.questdb.io/
https://github.com/questdb/time-series-streaming-analytics-template

- THANK YOU!

KV

